
Lifted Disjoint Paths with Application in Multiple Object Tracking
Appendix

Andrea Hornakova * 1 Roberto Henschel * 2 Bodo Rosenhahn 2 Paul Swoboda 1

Abstract
This appendix supplements our work by present-
ing missing proofs regarding the solver and details
about our tracker.

Sections 10.1 up to Section 10.4 provide proofs
used in Sections 4 and 6.

Section 10.6 provides further information how
the optimal assignments used in Section 7.5 were
obtained. The impact of the employed post-
processing used in our tracker is analyzed in Sec-
tion 10.7. Details about the used fusion network
are given in Section 10.8. Finally, evaluation met-
rics for all tracked sequences are provided in Sec-
tion 10.9.

10. Appendix
10.1. Proofs for Section 4

Proposition 3. Path inequalities (8) define a strictly tighter
relaxation of the lifted disjoint path problem than the lifted
multicut path inequalities

∀vw ∈ E′ ∀P ∈vw-paths(G) :

y′vw ≥
∑
ij∈PE

(yij − 1) + 1 . (13)

Proof. Let us define the following sets:

SB = {(y, y′) ∈ [0, 1]E × [0, 1]E
′
|(y, y′) satisfy (8)} ,

SM = {(y, y′) ∈ [0, 1]E × [0, 1]E
′
|(y, y′) satisfy (13)} .

• Let us prove that SB ⊂ SM
*Equal contribution 1Computer Vision and Machine Learning,

Max Planck Institute for Informatics, Saarbrücken, Saarland, Ger-
many 2Institut for Image Processing, Leibniz University Hannover,
Hannover, Niedersachsen, Germany. Correspondence to: Andrea
Hornakova <andrea.hornakova@mpi-inf.mpg.de>, Roberto Hen-
schel <henschel@tnt.uni-hannover.de>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Let us rewrite the right hand side of (8) for a path P ∈
vw-paths(G):

y′vw ≥
∑

vj:j∈PV

yvj −
∑

i∈PV \{v,w}

∑
k/∈PV

yik =

=
∑

vj:j∈PV

yvj −
∑

i∈PV \{v,w}

(xi −
∑
j∈PV

yij) =

=
∑

i∈PV \w

∑
j∈PV

yij −
∑

i∈PV \{v,w}

xi ≥

≥
∑
ij∈PE

yij −
∑

i∈PV \{v,w}

1 =

=
∑
ij∈PE

(yij − 1) + 1 . (14)

• Let us prove that SB (SM
We prove that there exists (y, y′) ∈ [0, 1]E×[0, 1]E

′
such

that (y, y′) satisfies (13) and does not satisfy (8). An ex-
ample is given in Figure 2. There are four possible paths
from v to w. If we use Constraints (13), the highest lower
bound on y′vw is given by path P = (vv2, v2v4, v4w) and
it is as follows:

y′vw ≥ (0.5− 1) + (0.5− 1) + (1− 1) + 1 = 0 .

Let us apply Constraint (8) using path P =
(vv1, v1v2, v2v3, v3v4, v4w). We obtain the following
threshold on y′vw

y′vw ≥ 0.5 + 0.5− 0− 0 = 1 .

Proposition 1. The lifted path inequalities (10) provide a
strictly better relaxation than the path inequalities (8).

Proof. Let us define the following sets

SB = {(y, y′) ∈ [0, 1]E × [0, 1]E
′
|(y, y′) satisfy (8)} ,

SL = {(y, y′) ∈ [0, 1]E × [0, 1]E
′
|(y, y′) satisfy (10)} .

• Let us prove that SL ⊂ SB :
Note that every path P ∈ vw-paths(G) belongs to the set
of vw-paths(G∪G′) too. It just holds that PE′ = ∅. Let

Lifted Disjoint Paths with Application in Multiple Object Tracking

v v1 v2 v3 v4 w

v5 v6

0.5 0.5 0.5 0.5 1

0 0

0.5 0.5

?

Figure 2. Failure case for lifted multicut path inequality (13). The
path inequality (8) gives the correct lower bound for lifted edge
y′vw in this case. Example for Proposition 3.

us rewrite the right hands side of the inequality from (10)
for such P ∈ vw-path(G ∪G′) where PE′ = ∅.

y′vw ≥
∑

vj:j∈PV

yvj −
∑

i∈PV \{v,w}

∑
k/∈PV

yik

+
∑

ij∈PE′

y′ij −
∑

ij∈PE′∩E
yij =

=
∑

vj:j∈PV

yvj −
∑

i∈PV \{v,w}

∑
k/∈PV

yik .

Which is exactly the right hand side of (8). Therefore,
any pair of real vectors (y, y′) ∈ [0, 1]E × [0, 1]E

′
that

satisfies (10) must satisfy (8) as well.

• Let us prove that SL (SB :
We prove that there exists (y, y′) ∈ [0, 1]E × [0, 1]E

′

such that (y, y′) satisfies (8) and does not satisfy (10).
See the graph in Figure 3. There are four possible paths
from v to w in G. If we use Constraints (8), all the paths
give us the same lower bound on y′vw

y′vw ≥ 1− 0.5− 0.5 = 0 .

If we use Constraints (10) with path P = (vv1, v1v4, v4w)
where PE′ = {v1v4, v4w}, we obtain

y′vw ≥ 1− 0.5− 0.5− 0.5− 0.5 + 1 + 1 = 1 .

Proposition 2. The lifted path-induced cut inequalities (11)
define a strictly tighter relaxation than the path-induced cut
inequalities (9).

Furthermore the lifted path-induced cut inequalities (11)
and (12) define a strictly better relaxation than (11) alone.

Proof. Let us define the following sets

SB = {(y, y′) ∈ [0, 1]E × [0, 1]E
′
|(y, y′) satisfy (9)} ,

SL1 = {(y, y′) ∈ [0, 1]E × [0, 1]E
′
|(y, y′) satisfy (11)} ,

SL2 = {(y, y′) ∈ [0, 1]E × [0, 1]E
′
|(y, y′) satisfy (12)} .

v v1

v2

v3

v4

v5

v6

w
1

0.5

0.5

0.5

0.5

1
0.5

0.5

0.5

0.5

1

?

Figure 3. Exemplary case where the path inequalities (8) give a
trivial lower bound on lifted edge y′vw. The lifted path inequal-
ity (10) gives the correct lower bound. Example for Proposition 1.

• First, we prove SL1 ⊂ SB :
We use the same argument as in the proof of Proposi-
tion 1. Every path P ∈ vw-paths(G) belongs to the set
of vw-paths(G ∪G′) and it holds that PE′ = ∅. Let us
rewrite the right hands side of the inequality from (11)
for such P ∈ vw-path(G ∪G′) where PE′ = ∅.

y′vw ≤
∑
i∈PV

∑
k/∈PV
kw∈R

yik −
∑

ij∈PE′

y′ij +
∑

ij∈PE′∩E
yij =

=
∑
i∈PV

∑
k/∈PV
kw∈R

yik .

Which is exactly the right hand side of (9). Therefore,
any pair of real vectors (y, y′) ∈ [0, 1]E × [0, 1]E

′
that

satisfies (11) must satisfy (9).

• Let us prove SL1 (SB :
We prove that there exists (y, y′) ∈ [0, 1]E × [0, 1]E

′

such that (y, y′) satisfies (9) and does not satisfy (11).
See the example in Figure 4. There are four possible
paths in G from v to either u1 or u2. They are P1 =
(vv3, v3u1), P2 = (vv2, v2u1), P3 = (vv3, v3u2), P4 =
(vv2, v2u2). Using (11), all of them give us the same
threshold on y′vw:

y′vw ≤ 0.5 + 0.5 + 0 = 1 .

If we use Constraint (11) with path P = (vu1), we obtain
the following threshold:

y′vw ≤ 0.5 + 0.5 + 0− 1 = 0 .

• Let us prove that SL1 ∩ SL2 (SL1

It holds trivially that SL1 ∩ SL2 ⊂ SL1. Let us prove
that there exists (y, y′) ∈ [0, 1]E × [0, 1]E

′
such that

(y, y′) ∈ SL1 and (y, y′) /∈ SL1 ∩ SL2.
See the example graph in Figure 5. Similarly as in Fig-
ure 4, there are four possible paths from v to either u1 or
u2 in G. There are no active lifted edges that would en-
able us to obtain a better upper bound on y′vw using (11)

Lifted Disjoint Paths with Application in Multiple Object Tracking

v1 v2 u2 w

v v3 u1 w̃

0.5 0.5

0.5

0.5 0.5 1

0

0.5 0

0.5

0.5

1

1

1

?

Figure 4. Exemplary case where the path-induced cut inequali-
ties (9) fail to give non-trivial upper bounds for lifted edge y′vw.
The lifted path-induced cut-inequalities (11) give the correct upper
bound in this case. Example for Proposition 2.

v1 v2 u2 w

v v3 u1 w̃

1 0.5

0.5

1 0.5 0.5

0.5

0.5 0.5

0

0

0.5

0
?

Figure 5. Exemplary failure case for the lifted path-induced cut
inequalities (11). The lifted path-induced cut inequalities (12)
give the correct upper bound for lifted edge y′vw. Example for
Proposition 2.

than the following:

y′vw ≤ 1 .

However, if we use Constraints (12) with path P = (vv3)
and y′v3w = 0, we obtain

y′vw ≤ 0 .

10.2. Symmetric Form of Cut Inequalities

Inequalities symmetric to (9):

∀vw ∈ E′ ∀P ∈ uw-paths(G) s.t. vu ∈ R ∧ u 6= v :

y′vw ≤
∑
i∈PV

∑
k/∈PV ,
vk∈R

yki . (15)

Inequalities symmetric to (11)

∀vw ∈ E′ ∀P ∈ uw-paths(G ∪G′) s.t. vu ∈ R ∧ u 6= v :

y′vw ≤
∑
i∈PV

∑
k/∈PV ,
vk∈R

yki −
∑

ij∈PE′

y′ij

+
∑

ij∈PE′∩E
yij . (16)

Inequalities symmetric to (12)

∀vw ∈ E′ ∀P ∈ uw-paths (G ∪G′) s.t. vu ∈ E′ :

y′vw ≤
∑

i∈PV \u

∑
k/∈PV ,
vk∈R

yki −
∑

ij∈PE′

y′ij

+
∑

ij∈PE′∩E
yij + y′vu . (17)

Proposition 4. The lifted path-induced cut inequalities (16)
define a strictly tighter relaxation than the path-induced cut
inequalities (15).
The lifted path-induced cut inequalities (16) and (17) define
a strictly better relaxation than (16) alone.

Proof. Analogical to the proof of Proposition 2. See Fig-
ure 6 for example analogical to the one in Figure 4 and
Figure 7 for example analogical to the one in Figure 5.

Proposition 5. 1. The path-induced cut inequalities (9)
together with their symmetric counterpart (15) define
a strictly tighter relaxation than inequalities (9) alone.

2. The path-induced cut inequalities (11) together with
their symmetric counterpart (16) define a strictly
tighter relaxation than inequalities (11) alone.

3. Using path-induced cut inequalities (17) together with
(11), (12) and (16) strictly improves the relaxation.

Proof. 1. See the example in Figure 8.
Upper bound on y′vw by (9): y′vw ≤ 0.5 + 0.5 = 1.
Upper bound on y′vw by (15): y′vw ≤ 0.

2. See the example in Figure 6.
Upper bound on y′vw by (11): y′vw ≤ 0.5 + 0.5 = 1.
Upper bound on y′vw by (16) using path P = (u2w):
y′vw ≤ 0 + 0.5 + 0.5− 1 = 0.

3. See the example in Figure 7.
Upper bounds on y′vw by (11), (12), (16): y′vw ≤ 1.
Upper bound on y′vw by (17) using path P = (uw)
and y′vu = 0: y′vw ≤ 0.

10.3. Other Valid Inequalities

Basic flow constraints (5) together with the advanced con-
strains on lifted edges (6)-(12) are sufficient for defining
the set of feasible solutions of the lifted disjoint paths prob-
lem (3). Moreover, they define an efficient LP relaxation
(Section 4) and enable efficient separation procedures (Sec-
tion 5). Below, we present lifted flow inequalities specific to
the lifted disjoint paths problem applied to MOT that help

Lifted Disjoint Paths with Application in Multiple Object Tracking

v1 u2 v2 w

v u1 v3 w̃

1 0.5

0.5

1 0.5 0.5

0.5
0.5

0.5
0

0

0.5

1

1

?

Figure 6. The best upper bound on y′vw is provided by inequali-
ties (16). Example for Proposition 4 and Proposition 5.

v1 v2 u w

v v3 v4 w̃

0.5 0.5

0.5

0.5 0.5 1

0
0.5

00.5
0.5

1

0 ?

Figure 7. The best upper bound on y′vw is provided by inequali-
ties (17). Example for Proposition 4 and Proposition 5.

v

ṽ

v3

v2

v1

v5

v4

v8

v7

v6

w̃

w
1

0

1

0

1

0

1

0

0.5

0.5

0.5

0.5 0.5

0.5

0.5

0.5

0 0

?

Figure 8. The best upper bound on y′vw is provided by inequali-
ties (15). Example for Proposition 5.

to improve the speed of our ILP solver. The inequalities
depend on the fact that every node can be connected to max-
imally one node in each time frame. Therefore the number
of lifted edges originating (or ending) in a given point and
ending (resp. originating) in a specific time frame is at most
one.

∀k, l ∈ {1, . . . , T} : k > l, ∀v ∈ Vl :∑
vu∈E′:u∈Vk

y′vu ≤ xv , (18)

∀k, l ∈ {1, . . . , T} : k < l, ∀w ∈ Vl :∑
uw∈E′:u∈Vk

y′uw ≤ xw . (19)

The number of constraints (18) and (19) is linear in the
number of vertices. Therefore, we add them to our initial
constraint set. This enables to reduce the search space for
the branch and bound method in the early solver stages
when only few constraints of type (8)-(12) have been added.

10.4. Proofs for Section 6 Complexity

We define YGG′ to be the set of all (y, y′) ∈ {0, 1}E ×
{0, 1}E′

such that (y, y′) are feasible solutions of the lifted
disjoint path problem (3).

Integer multicommodity flow. The integer multicom-
modity flow problem is defined on a directed graph G =
(V, E) with edge capacities c ∈ NE and source/sink pairs
siti and edge flows fi ∈ NE and demands Ri, i = 1, . . . , k.

The aim is to send k flows from their sources to their sinks
such that the flows obey the edge capacities. Formally,

k∑
i=1

f ie ≤ ce ∀e ∈ E (20)∑
u:uv∈E

f iuv =
∑

w:vw∈E
f ivw ∀i ∈ [k] ∀v /∈ {si, ti} (21)∑

v:siv∈E
f isiv ≥ Ri ∀i ∈ [k] (22)

where [k] denotes the set {1, . . . , k}. Even has shown
in (Even et al., 1976) that the integer multicommodity flow
problem is NP-complete also in the case of unit capacity
edges and two source sink pairs. Below we detail a construc-
tion that gives us a correspondence between edge-disjoint
paths in G and node-disjoint paths in the transformed graph
G. This construction is similar to transforming a graph into
its line graph. The lifted edges in the transformed graph will
count how many units of flow go from sources to sinks.

Lemma 1. There exists a polynomial transformation from
any graph G with source/sink pairs si, ti, i = 1, . . . , k

Lifted Disjoint Paths with Application in Multiple Object Tracking

with demands Ri to a pair of graphs G and G′ with
edge costs c and c′ respectively such that there exists a
feasible integer multicommodity flow in G if and only if
the lifted disjoint paths problem for G,G′ has objective
min(y,y′)∈YGG′ 〈c, y〉+ 〈c′, y′〉 ≤ −

∑k
i=1Ri.

Proof. Without loss of generality, we consider these fea-
sible flow sets f1, . . . , fk where it holds ∀i ∈ [k] :∑
siv∈E f

i
siv = Ri. Note that if the flow of commodity

i is higher than its demand Ri, we can reduce it to Ri by re-
moving the flow across one or more siti-paths in G without
violating other constraints.
We first detail the graph transformation (see Figures 9 and
10).

• For all edges ij ∈ E add a vertex vij to V .

• For each pair of vertices vij , vjk ∈ V add an edge
(vij , vjk) to E.

• Add vertices s and t to V .

• Add to V vertices s1
i , s

2
i , . . . , s

Ri
i representing require-

ments of each commodity i.

• For each vertex sri add an edge (s, sri) to E.

• For each pair of vertices sri , vsij add edge (sri , vsij) to
E.

• For all vkti ∈ V (representing and edge from k to ti in
G) add an edge (vkti , t) to E.

• For all pairs of vertices vsij vkti ∈ V add an edge
(vsij , vkti) to E′. That is, the lifted edges connect all
vertices representing edges from si in G with vertices
representing the edges to ti in G.

• Cost function on base edges ∀e ∈ E : ce = 0.

• Cost function on lifted edges ∀e′ ∈ E′ : c′e′ = −1.

An illustration of this construction can be seen in Figures 9
and 10. Note that the construction of G in (Even et al., 1976)
allows si = sj for i 6= j. In this case, we still construct
separate vertices for their incident edges in G.

Every pathP = (sik1, k1k2, . . . , knti) in G can be assigned
to a path P = (ssri , s

r
i vsik1

, vsik1
vk1k2

, . . . , vkntit) in G
where r ∈ [Ri] can be chosen arbitrarily and vice versa.
Note that such a path P saturates exactly one lifted edge
(vsik1

, vknti). Moreover, every feasible set of flow functions
f1, . . . , fk satisfying for all i ∈ [k] :

∑
siv∈E f

i
siv = Ri

defines a set of edge-disjoint paths from s1, . . . , sk to
t1, . . . , tk in G. This set corresponds to a set of

∑k
i=1Ri

st-paths in G whose edges and vertices are disjoint and
where every path saturates exactly one lifted edge vsijvkti .
Every lifted edge contributes with −1 to the total cost. So,
this set of disjoint st-paths has total cost −

∑k
i=1Ri.

Reversely, let us have a set of vertex- and edge-disjoint

s1

s2

a

b

c

d

e

t1

t2

Figure 9. Integer multicommodity flow network transformation:
Original graph.

s t

s21

s31

s12

s22

s1a

s1b

s2b

s2c

at1

bd

be

ce

dt2

et1

et2

-1

-1
-1

-1

-1

-1
-1

-1

Figure 10. Integer multicommodity flow network transformation.
Transformed graph from Figure 9 for flow demands R1 = 2, R2 =
2. Edges without label have cost 0.

st-paths in G of size
∑k
i=1Ri where every path contains

some vsijvkti-path as its subpath and therefore its cost is
−
∑k
i=1Ri. This set defines uniquely a set of feasible flow

functions f1, . . . , fk.
So, there exist feasible functions f1, . . . , fk satisfying fi =

Ri for all i ∈ [k] iff min
(y,y′)∈YGG′

γ(y, y′) ≤ −
∑k
i=1Ri.

Theorem 1. Lifted disjoint paths problem (3) with negative
lifted edges only is NP-hard.

Proof. The NP-complete integer multicommodity flow
problem with unit edge capacities can be reduced in poly-
nomial time to the lifted disjoint paths problem (3) with
negative lifted edges only. The transformation is described
in Lemma 1.

3-SAT. The boolean satisfiability problem (SAT) is a clas-
sical NP-complete problem (Cook, 1971). A transformation

Lifted Disjoint Paths with Application in Multiple Object Tracking

c̄ d̄ e ē

b c c c

a a ā ā

s t

-1 -1

4
4

-1-1

-1

-1 -1

-1 -1 -1

-1

-1

-1

-1

-1

-1-1

-1

-1-1 -1 -1 -1 -1

4 4

4

Figure 11. Reduction to lifted disjoint paths problem for 3-SAT
formula (a ∨ b ∨ c̄) ∧ (a ∨ c ∨ d̄) ∧ (ā ∨ c ∨ e) ∧ (ā ∨ c ∨ ē).

from its NP-complete special version 3-SAT is commonly
used for proving than a problem is NP-hard or NP-complete.
Theorem 2. Lifted disjoint paths problem (3) with positive
lifted edges only is NP-hard.

Proof. Below, we detail a transformation from 3-SAT to
the lifted disjoint paths problem with positive lifted edges
only. For the transformation, it holds that a 3-SAT for-
mula consisting of k clauses has a true assignment iff

min
(y,y′)∈YGG′

γ(y, y′) ≤ −(k − 1).

Let a 3-SAT problem containing k ordered clausesC1 . . . Ck
be given. Each clause Ci consists of a conjunction of liter-
als, which is either a variable a or its complement a. We
construct graphs G = (V,E) and G′ = (V ′, E′) as follows.

• The graph G has k layers. Every layer corresponds to
one clause. Each layer contains 3 vertices labeled with
the literals in the corresponding clause. Specifically, for
a variable a in clause Ci we associate node via, analogu-
ously for a complemented variable b in clause Ci we
associate node vib̄.

• For every pair of vertices vil1 ∈ V and vi+1l2 ∈ V
where l1 6= l̄2 add an edge (vil1 , vi+1l2) to E and set
c(vil1 ,vi+1l2

) = −1.

• For every variable a and every pair of vertices via, vjā ∈
V where j > i + 1 add an edge (via, vjā) to E′ and
set c′(via,vjā) = k. Do so analoguously for every pair of
variables viā and vja.

• Add an edge from s to all vertices corresponding to the
first clause. And an edge to t from all vertices corre-
sponding to the last clause.

An illustration of this construction can be found in Fig-
ure 11.

Every path P ∈ st-paths(G) that has cost −(k − 1) satu-
rates vertices labelled by non-contradicting literals. We can

obtain a 3-SAT solution from P as follows. If via ∈ PV ,
set variable a := true. If vjb̄ ∈ P , set variable b := false.
Variables not contained as labels of vertices in PV can have
arbitrary values.
Similarly, every solution of 3-SAT problem defines at least
one path P ∈ st-paths(G) that has cost −(k − 1).

10.5. Implementation Details on the Lifted Disjoint
Paths Solver

The solver for the lifted disjoint paths problem is imple-
mented in C++ and builds upon Gurobi 7.5. All experiments
were conducted on a machine with a 6-Core Intel 2.00GHz
CPU and 128 GB RAM.

10.6. Optimal data association

The experiment of Section 7.5 compares the assignments
of our tracking system with the optimal assignments. We
elaborate on the details to obtain the optimal assignments.
We start with the pre-processed input detections, according
to Section 7.2. For each frame, we compute the intersection
over union between the detections and ground-truth boxes
of the respective frame, which forms a weighted bipartite
graph. Edges with a corresponding intersection over union
below 0.5 are removed. Then, we use Hungarian matching
to find a maximum-weight matching. Unmatched detections
are considered as false positives, while matched detections
are assigned the corresponding ground-truth label. Thus, we
obtain the trajectories on the input detections using the opti-
mal assignment. Finally, depending on the time threshold of
Table 1, trajectories are synthetically splitted at skip-edges
longer than the specified threshold.

10.7. Ablation study on post-processing methods.

Solving the proposed lifted disjoint paths problem estab-
lishes the assignment of input detections to object identities
very close to the best possible assignment (Section 7.5).

To localize tracked objects also in the frames in which the
object detector failed to detect them, some trackers apply
an additional object detector on these frames based on the
available input detections. This can be seen as performing in-
terpolation and extrapolation, if viewed from the perspective
of data association in a tracking-by-detection framework,
e.g. see (Bergmann et al., 2019). As a result, improvements
can be achieved from extending trajectories to image ar-
eas without input detections by applying of a very accurate
object detector.

In order to make our tracking performance comparable with
other trackers, we follow this strategy and employ an inter-
and extrapolation based on (Bergmann et al., 2019).

Lifted Disjoint Paths with Application in Multiple Object Tracking

During the inter- and extrapolation, output detections (com-
ing from the lifted disjoint paths solver) are preserved. In
particular, the detections are not rejected, reshaped, neither
are their labels changed by Tracktor. Instead, we apply
Tracktor to recover further locations of an object in the
frames where detections of the object were missing. The
procedure is based on its trajectory obtained from the lifted
disjoint paths solver. Note that our adaption ignores addi-
tional, unassigned input detections, whereas the original
implementation (Bergmann et al., 2019) of Tracktor fuses
the detections coming from Tracktor’s detector with detec-
tions provided by the dataset.

Method MOTA IDF1
Assignment 52.8 64.3
Assignment (optimal) 53.4 66.8
Assignment+SI 57.8 67.6
Assignment+SI∗ 59.5 68.9
Assignment+VI 59.6 68.5
Assignment+VI+VE 65.7 71.5
Assignment+VI+VE+SI 67.0 72.4

Table 3. Ablation study on inter- and extrapolation, evaluated on
the MOT17 train set. SI = spatial interpolation only on sequences
filmed from a static camera, SI∗ = spatial interpolation on all
sequences, VI = visual interpolation, VE = visual extrapolation.
Assignment and assignment (optimal) denote the results of the
lifted disjoint paths problem and the optimal assignment, as re-
ported in Section 7.5 given 2s time gap. Note that Tracktor’s object
detector is fine-tuned on MOT17Det. In our experiments, this re-
sulted in bigger improvements on the MOT17 training set than on
the test set, compare Table 2.

Table 3 reports the influence of employing inter- and ex-
trapolation. The first two rows repeat values from Table 1
given the maximal 2s time gap. Since our solver produces
nearly optimal data assignemt with respect to the used in-
put detections, further improvements can only be achieved
by applying interpolation and extrapolation on the tracks
obtained by the solver.

We compare the visual interpolation (VI) as well as visual ex-
trapolation (VE), both using the method of (Bergmann et al.,
2019) with spatial interpolation (SI). For SI, we employ
linear interpolation based solely on the geometric bounding
box information.

The interpolation SI is applied only to sequences with a
fixed camera in order to guarantee robust approximations.
Still, the improvements by Assignment+SI over the baseline
is evident. Especially the MOTA metric, which measures
mainly the coverage of objects by detections, improves
by about 10%. We also evaluate spatial interpolation for
all sequences (SI∗), which improves the tracker further to
59.5 MOTA and 68.9 IDF1. However, performing spatial

interpolation on sequences with moving cameras can lead
to error propagation. Thus, our final tracker Lif_T relies
on the more robust visual interpolation and employs spatial
interpolation only on sequences filmed from a static camera.

On the contrary, the visual interpolation based on
(Bergmann et al., 2019) can be applied robustly to all se-
quences, but only in situations where the object is visible.
Accordingly, the method Assignment+VI further improves
over the baseline, as it is applied to more frames.

Recovering the position of tracked objects also outside of the
time range of its computed trajectory (Assignment+VI+VE)
further helps to improve the tracking accuracy, enhancing
MOTA by about 20% and IDF1 by about 10% IDF1, as
VE extends computed trajectory thereby achieving longer
identity consistencies.

Finally, we employ spatial interpolation on the remaining
cases where detections are missing and the objects are fully
occluded (Assignment+VI+VE+SI) resulting in a slight im-
provement over Assignment+VI+VE.

Note that we use the method Assignment+VI+VE+SI to
evaluate our tracker on the MOT15, MOT16 and MOT17
test set, as reported in Table 2. The impact of the post-
processing on the training set using Tracktor seems to be
very high. We conjectured this might be due to the fact
that Tracktor’s object detector is trained on MOT17Det
(which are the detections of MOT17), leading to some de-
gree of overfitting. Note that Tracktor is not trained the
MOT17 tracking ground truth, so that it is still regarded as
a meaningful validation procedure (Bergmann et al., 2019).
Therefore, we created another tracker Lif_TsimInt that uses
a simple interpolation, namely only linear interpolation be-
tween detections of a trajectory, for all sequences. The
tracker thus corresponds to Assignment+SI∗. Comparing
Table 3 with Table 2, we see that indeed, the impact of the
post-processing on the test set is significantly lower. We
conclude that while the post-processing improves the track-
ing performance, the main performance of our tracker is due
to our contributions.

Recall that most offline tracking systems obtain trajecto-
ries by solving a data association problem, e.g. (Henschel
et al., 2018; Tang et al., 2017; Ristani & Tomasi, 2018).
Our proposed tracker is able to achieve near-optimal results
with respect to the input detections. Applying interpolation
and extrapolation further improves the results, and makes
it conceptually comparable to Tracktor. Still, with post-
processing on our computed data-association, we improve
over Tracktor by 25%. We argue that solving the data asso-
ciation accurately is important to obtain a final high-quality
result after post-processing.

Lifted Disjoint Paths with Application in Multiple Object Tracking

10.8. Further Details on the Feature Fusion Network.

We discuss in detail the neural network which fuses the
input features, thereby extending Section 7.3.

Architecture of the fusion network. Considering one as-
signment hypothesis represented by an edge e = vw, the
DeepMatching densities ρ ∈ [0, 1]6 as well the temporal
distance t between the corresponding detections v and w
serve as a confidence score for the remaining input features.
They describe which of the input features is a reliable metric
for a given assignment hypothesis, but they are not giving
any information about the correctness of the assignment
hypothesis. We transform the density features non-linearly
and denote them together with the temporal distance as
control features C(e) := (log(ρ), t) ∈ R6 × [0, 2]. The
remaining features described in Section 7.3 are denoted as
F(e) ∈ [0, 1]n.

One plausible architecture is to use a convex combination
of the input features, such that the coefficients depend on
the control features. To this end, let αi(C(e),Wαi) for
i = 1, · · · , n denote a neural network with the control
features as input and Wαi

as learnable weights. Further,
let βi(F(e)i,Wβi

) for i = 1, · · · , n be a neural network
applied to i-th feature of F(e), with learnable weights Wβi

.

The input features and control features can then be fused via

n∑
i=1

αi(C(e),Wαi)βi(F(e)i,Wβi), (23)

such that
n∑
i=1

αi(C(e),Wαi) = 1. (24)

To ensure stable training, (23) should be applied to a sigmoid
function and trained using binary cross-entropy loss.

Nonetheless, our tracker implementation employs neural
network based mainly on a combination of relu units and
fully connected layers, which performed slightly better, still
sharing the idea of seperating the input into control features
and input features. The detailed architecture is depicted in
Figure 12.

Training details. Training of the neural network is per-
formed directly on the (preprocessed) input detections. La-
bels are retrieved by assigning each detection to the best
fitting ground-truth bounding box. Detections with ambigu-
ous assignments are ignored within the training phase.

In order to train the edge classifier, special care has to be
taken as the training set is highly imbalanced. The num-
ber of edges which correspond to true negatives (pairs of
detections which do not belong to the same person) clearly

Figure 12. The architecture of the edge classifier used in Lif_T.
FC-i denotes a fully-connected layer with i nodes in as outputs.
Using a concatenation with subsequent fully connected layer, m
control features and n input features are fused.

dominates the number of true positive edges (pairs of detec-
tions belonging to the same person).

To address this issue, the network is trained on a randomly
sampled subset of all possible edges, such that the ratio of
true positive edges and true negative edges per time distance
between the end nodes of the edges remains fixed. The
maximal temporal distance of an edge is set to 2 seconds,
allowing to recover persons even after long occlusions.

The weights of the fusion network are optimized according
to the binary cross-entropy loss. We employ stochastic gra-
dient descent with the learning rate set to 10−2 and Nesterov
momentum set to 0.9, for a total of 10 epochs. Training and
inference is performed using Pytorch 1.3 on a Nvidia RTX
2080 Ti.

Accuracy of the fusion network. The performance of a
tracking system depends highly on the accuracy of the edge
classifier (and the corresponding edge weights).

Therefore, we report our evaluation of the edge classifier
on all training sequences of the filtered MOT17 train set in
Table 4. Together with Table 5 and Table 2, it shows that
improvements in the tracking features directly correlate to
high quality tracking results thanks to the proposed solver.
While Table 4 shows very good performance of the edge
classifier, a powerful graph model and solver is still crucial
to obtain high quality tracking results. Even small errors
(we observed 5% maximal error) in the edge classifier can
cause many errors in the tracking results if an unsuitable pro-
cedure is used. Also note that for training the edge classifier,
detections with ambiguous assignment to the ground truth
boxes were ignored. So, these potentially difficult cases are
excluded int the evaluation of the edge classifier. Especially
the interpolation and extrapolation is prone to error propaga-
tion, once a single identity switch has been created, which
heavily affects, among others, the IDF1 score. Our lifted

Lifted Disjoint Paths with Application in Multiple Object Tracking

Sequence Acc ↑ Prec ↑ TPR ↑ TNR ↑
MOT17-02-DPM 1.00 0.99 1.00 1.00
MOT17-04-DPM 1.00 0.98 0.99 1.00
MOT17-05-DPM 0.95 0.95 1.00 0.99
MOT17-09-DPM 1.00 0.98 0.98 1.00
MOT17-10-DPM 1.00 0.99 0.99 1.00
MOT17-11-DPM 1.00 1.00 0.99 1.00
MOT17-13-DPM 0.99 0.97 0.96 1.00
MOT17-02-SDP 1.00 0.96 1.00 1.00
MOT17-04-SDP 1.00 0.98 0.98 1.00
MOT17-05-SDP 0.99 0.92 1.00 0.98
MOT17-09-SDP 0.97 0.81 0.99 0.97
MOT17-10-SDP 0.99 0.94 0.97 1.00
MOT17-11-SDP 1.00 0.99 0.99 1.00
MOT17-13-SDP 0.99 0.90 0.96 0.99
MOT17-02-FRCNN 1.00 0.98 1.00 1.00
MOT17-04-FRCNN 1.00 0.97 0.99 1.00
MOT17-05-FRCNN 0.99 0.94 1.00 1.00
MOT17-09-FRCNN 0.99 0.97 0.98 1.00
MOT17-10-FRCNN 0.99 0.95 0.98 1.00
MOT17-11-FRCNN 1.00 0.99 0.99 1.00
MOT17-13-FRCNN 0.99 0.90 0.95 0.99

Table 4. Performance metrics on the edge classifier. The perfor-
mance is measured in terms of the accuracy (Acc), precision (Prec),
true positive rate (TPR) and true negative rate (TNR). The arrows
indicate that higher metric values are better.

disjoint paths formulation can be advantageous, since lifted
edges aggregate multiple edge classifiers which can correct
individual wrong classifications of single edges.

10.9. Extended Quantitative Results

We provide additional evaluations on our tracking system
as well as on the lifted disjoint paths solver.

Detailed tracking evaluations. We provide the evalua-
tions of the MOT15, MOT16, MOT17 test sets as well as
the MOT17 train set per sequence in Table 5. In addition, the
table contains the solver time (STime) in seconds, needed
to solve the corresponding lifted disjoint paths problem.

Lifted Disjoint Paths with Application in Multiple Object Tracking

Sequence MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓ STime↓

M
O

T
17

-T
ra

in

MOT17-02-DPM 40.5 50.3 13 29 19 11017 26 23 127
MOT17-04-DPM 69.9 73.9 41 22 298 13986 38 41 1521
MOT17-05-DPM 58.2 67.0 31 40 40 2824 27 65 36
MOT17-09-DPM 72.9 71.6 14 1 58 1370 15 7 59
MOT17-10-DPM 67.4 70.2 26 8 106 4043 39 82 173
MOT17-11-DPM 67.3 73.9 24 26 55 3017 11 28 115
MOT17-13-DPM 63.6 67.2 45 36 64 4127 43 48 59
MOT17-02-FRCNN 47.4 57.2 15 22 89 9656 26 27 229
MOT17-04-FRCNN 67.5 74.1 38 21 98 15310 29 13 1535
MOT17-05-FRCNN 60.2 68.9 35 36 73 2651 30 62 92
MOT17-09-FRCNN 71.5 72.9 14 1 54 1451 10 7 51
MOT17-10-FRCNN 73.2 76.2 33 2 270 3096 73 145 398
MOT17-11-FRCNN 73.1 78.8 32 18 82 2436 18 27 133
MOT17-13-FRCNN 77.1 75.8 68 10 203 2394 73 89 388
MOT17-02-SDP 55.0 61.3 16 16 65 8236 52 50 586
MOT17-04-SDP 77.7 81.8 46 13 243 10296 49 66 4133
MOT17-05-SDP 64.0 69.5 41 22 105 2351 33 84 80
MOT17-09-SDP 73.0 73.0 14 1 69 1356 12 12 127
MOT17-10-SDP 75.0 78.6 35 2 349 2759 105 160 756
MOT17-11-SDP 74.4 78.4 36 14 115 2277 27 36 198
MOT17-13-SDP 70.8 71.4 62 24 200 3150 55 81 364
MOT17-Train 67.0 72.4 679 364 2655 107803 791 1153 11430

M
O

T
17

-T
es

t MOT17-01-DPM 48.3 58.1 8 11 68 3258 10 19 38
MOT17-03-DPM 73.3 70.1 82 17 3560 24276 160 256 24311
MOT17-06-DPM 58.1 64.7 61 77 178 4728 28 155 113
MOT17-07-DPM 44.4 52.3 7 21 155 9176 60 209 297
MOT17-08-DPM 34.7 47.4 18 37 254 13507 32 44 146
MOT17-12-DPM 48.3 62.3 18 41 35 4437 11 52 68
MOT17-14-DPM 36.1 48.8 12 77 268 11449 91 239 323
MOT17-01-FRCNN 47.7 58.1 8 10 246 3119 7 24 79
MOT17-03-FRCNN 72.2 71.8 71 17 2664 26277 124 250 11678
MOT17-06-FRCNN 60.4 63.7 68 61 279 4358 32 207 203
MOT17-07-FRCNN 44.0 54.9 8 20 279 9110 63 227 281
MOT17-08-FRCNN 31.9 43.3 17 37 383 13973 35 59 130
MOT17-12-FRCNN 47.3 58.0 16 43 37 4521 11 34 84
MOT17-14-FRCNN 36.2 49.0 16 72 629 11061 108 358 359
MOT17-01-SDP 47.8 57.8 9 10 346 3008 10 31 95
MOT17-03-SDP 78.2 77.3 92 13 3778 18879 132 323 16219
MOT17-06-SDP 60.3 65.1 67 64 305 4345 33 217 144
MOT17-07-SDP 45.8 55.0 8 18 285 8793 71 280 483
MOT17-08-SDP 34.8 47.7 18 34 429 13288 48 69 202
MOT17-12-SDP 47.3 60.7 18 42 158 4394 14 53 85
MOT17-14-SDP 38.3 51.4 15 69 630 10662 109 370 376

M
O

T
16

MOT16-01 48.3 58.2 8 10 78 3217 10 19 38
MOT16-03 73.0 69.9 80 17 3732 24329 159 310 24311
MOT16-06 58.2 64.7 62 77 249 4548 29 159 113
MOT16-07 45.6 53.4 7 16 189 8637 57 212 297
MOT16-08 43.4 55.7 18 24 284 9149 32 44 146
MOT16-12 50.2 64.0 18 37 44 4072 11 51 68
MOT16-14 36.1 48.8 12 77 268 11449 91 239 323

2D
M

O
T

15

ADL-Rundle-1 39.6 60.8 13 2 2277 3303 44 175 325
ADL-Rundle-3 59.2 69.9 23 7 902 3217 29 42 153
AVG-TownCentre 61.8 67.3 96 33 417 2217 99 213 20
ETH-Crossing 57.6 69.3 7 9 35 387 3 18 2
ETH-Jelmoli 51.4 67.1 18 14 520 701 12 44 20
ETH-Linthescher 53.7 62.2 42 98 318 3795 21 95 11
KITTI-16 36.2 32.7 5 1 456 521 108 60 57
KITTI-19 43.3 49.4 11 17 467 2315 249 142 135
PETS09-S2L2 56.9 43.6 9 2 476 3531 152 225 180
TUD-Crossing 88.0 90.9 11 0 64 62 6 13 13
Venice-1 45.8 62.1 9 3 905 1561 7 20 30

Table 5. We provide the results of our tracker Lif_T, evaluated per sequence. In addition, we provide the time necessary to solve the
corresponding lifted disjoint path problem instance (STime), in seconds. Arrows indicate whether low or high metric values are better.
Tracking results on the test sets were evaluated by the MOTChallenge server https://www.motchallenge.net

https://www.motchallenge.net

