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Abstract—A wide variety of computer vision applications rely on superpixel or supervoxel algorithms as a preprocessing step. This

underlines the overall importance that these approaches have gained in recent years. However, most methods show a lack of temporal

consistency or fail in producing temporally stable superpixels. In this paper, we present an approach to generate temporally consistent

superpixels for video content. Our method is formulated as a contour-evolving expectation-maximization framework, which utilizes an

efficient label propagation scheme to encourage the preservation of superpixel shapes and their relative positioning over time.

By explicitly detecting the occlusion of superpixels and the disocclusion of new image regions, our framework is able to terminate

and create superpixels whose corresponding image region becomes hidden or newly appears. Additionally, the occluded parts of

superpixels are incorporated in the further optimization. This increases the compliance of the superpixel flow with the optical flow

present in the scene. Using established benchmark suites, we show that our approach produces highly competitive results in

comparison to state-of-the-art streaming-capable supervoxel and superpixel algorithms for video content. This is further shown by

comparing the streaming-capable approaches as basis for the task of interactive video segmentation where the proposed approach

provides the lowest overall misclassification rate.

Index Terms—Video segmentation, oversegmentation, supervoxels, superpixels

Ç

1 INTRODUCTION

THE idea to group spatially coherent pixels sharing simi-
lar low-level features like color or texture into so called

superpixels and utilize them as primitives for image analy-
sis and processing was introduced by Ren and Malik in [1].
The pixel grouping leads to a major reduction of image
primitives, which results in an increased computational effi-
ciency for subsequent processing steps and allows for more
complex algorithms computationally infeasible on pixel
level [1]. Another benefit is the creation of a spatial support
for region-based features [2]. The applications of superpix-
els are widely spread and include e.g., tracking [3], scene
flow [4], 3D layout estimation of indoor scenes [5], image
parsing [6], video coding [7], and semantic segmentation [8].

Especially for video applications, the usage of superpix-
els instead of raw pixel data is beneficial. This has e.g., been
shown in [9], [10] for the case of unsupervised video
segmentation by partitioning a superpixel graph using spec-
tral clustering. The usage of superpixels boosts the runtime
performance as well as the segmentation quality because a
richer (region-based) feature set can be utilized. It has been
shown in [11] that the benefits can be further amplified by

learning the graph weights between the superpixels. But
quite often the superpixel algorithms used for video appli-
cations like [12], [13], [14], [15], [16], [17], [18] only target
single images. When applied to video sequences, the results
show volatile and flickering superpixel contours even if
there are only slight changes between consecutive frames.
Moreover, by design the temporal connections between
superpixels in successive video frames are not determined.
Consequently, the same image regions in consecutive
frames are not consistently labeled. The benefits of a consis-
tent labeling has e.g., been shown in [19] for the special case
of interactive video segmentation. Similarly, it was observed
in [11] that the selection of the graph structure is crucial for
a good segmentation result. This can either be accomplished
by merging the independently calculated superpixels in the
temporal dimension, as e.g., done in [20], or by directly cre-
ating a temporally consistent oversegmentation.

In a temporally consistent oversegmentation, each seg-
ment follows the underlying image patch when it moves
over time as can be seen in Fig. 1. The example also illustrates
that natural scenes, which involve moving objects or camera
motion, in general include some form of occlusion or disoc-
clusion of image regions. For a segmentation that can handle
structural scene changes, its segments should disappear as
soon as the corresponding image patch becomes occluded
and new segments should be created where disocclusion
happens. Previous approaches like [21], [22], [23] and [24]
produce a temporally consistent superpixel segmentation
but due to a lack of an explicit awareness of occlusion and
disocclusion boundaries, segments are deleted and created
in a rather randomized fashion.

This work is an extended version of two previously
published articles ([23] and [24]) that introduce a hybrid
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clustering scheme for temporally consistent superpixels for
video content. Besides a more detailed description of our
approach, the novel key contributions of this paper are:

� Wepropose a new segmentation propagationmethod
to initialize frames encouraging consistent superpixel
shape and relative positioning.

� We introduce an approach to detect occluded super-
pixel parts as well as disoccluded image regions
while propagating the superpixels onto new frames.

� The dis-/occlusion information is used to explicitly
handle structural changes in the video volume which
are induced by object- and self-occlusion.

� Additionally, we consider the hidden superpixel
parts during the optimization in order to increase
the consistency of the superpixel flow.

� Finally, we evaluate our newly proposed approach
and compare it against state-of-the-art streaming-
capable methods for video oversegmentation (as well
as our previous work) by using well established
benchmarks.

� In addition, we compare the approaches by utilizing
them for an interactive video segmentation task
in order to show the superiority of our proposed
approach in terms of segmentation quality in a com-
mon application.

The remainder of this work is organized as follows:
In Section 2, we shortly summarize previous works on spa-
tio-temporal oversegmentation and segmentation propaga-
tion. Subsequently, in Section 3, we revisit the generation
of superpixels using energy-minimizing contour-evolution
which is extended in Section 4 to the generation of tempo-
rally consistent superpixels. In the Sections 4.1, 4.2, and 4.3,
we introduce the basic ideas of our framework for tem-
porally consistent superpixel. Section 4.4 introduces the
new method to propagate superpixel contours onto new
frames for initialization and additionally shows how struc-
tural changes in the video volume are handled. Section 5
contains the detailed evaluation of our approach and a com-
parison to other state-of-the-art video oversegmentation
approaches. Finally, we conclude our paper in Section 6.

2 RELATED WORK

In general, all related approaches can be classified as either
generating superpixels with temporal consistency (e.g., [21],

[22], [25]) or supervoxels (e.g., [14], [15], [26]). The relation
between supervoxels and temporal superpixels can be
described in the followingway: Temporal superpixels can be
stacked up to build supervoxels. Similarly, a superpixel
representation with temporal consistency can be obtained
by slicing a supervoxel representation at frame instances.
It should be noted that this does not hold in the case where
the cross section of a supervoxel at a frame instance splits
up into spatially non-contiguous segments. In the following,
we will give a brief overview of available supervoxel and
temporal superpixel algorithms. An early example of this
kind of algorithms, which is not explicitly labeled as a super-
pixel or supervoxel approach but shares a similar idea, can
be found in [27]. A more extensive survey of a number of
temporally superpixel and supervoxel approaches as well as
benchmarkmetrics for their comparison can be found in [28].

In [15], a first supervoxel approach was published that
covers the video volume with overlapping cuboids, whereas
each cuboid corresponds to one label in the final segmenta-
tion. The volume of each cuboid determines the maximum
volume of the supervoxel to be generated. Thus, longer
cuboids encourage higher temporal consistency. The assign-
ment of each voxel to one label is done by formulating an
energy function incorporating image gradients and mini-
mizing this energy function using graph cut.

The authors of [26] proposed an approach for hierarchi-
cal video segmentation that is based on the graph-based
image segmentation method introduced in [29]. To leverage
the information of color histograms, the optimization proce-
dure is applied twice. In an initial run neighboring voxels
are merged into small voxel groups from which color histo-
grams can be computed. Based on the chi-square distances
between their color histograms the voxel groups are further
merged into larger spatio-temporal regions. By keeping
track of the mergers, a hierarchical video segmentation is
created. As the original approach of [26] requires access to
the whole video during the computation, it was extended
in [30] to provide streaming capabilities. By applying the
Markovian assumption to the segmentation of overlapping
chunks of the video stream, only a subset of frames is
needed during the segmentation process.

The clustering-based approach for superpixels of [14] can
be extended to a supervoxel algorithm by extending the
data points with a temporal dimension. Thereby, each voxel
is viewed as a data point in a six-dimensional feature space
consisting of three color, two spatial and one temporal
dimension. The supervoxels form clusters of data points
in the feature space and they are represented by the mean
vector of the assigned voxels. To estimate the parameters of
the clusters, an iterative expectation-maximization frame-
work is used. The distance of a voxel to a cluster center
is expressed by using a weighted norm to encounter the
different scales of the original dimensions[14].

A first approach towards temporal superpixels was
introduced in [25]. The approach is based on the TurboPixel
algorithm proposed in [13] which uses level-set techniques
to grow equally distributed seed points to non-overlapping
superpixels. To derive a temporally consistent segmenta-
tion, it was proposed in [25] to propagate the central point
of each superpixel using optical flow information in order
to initialize the seeds for the superpixels in each new frame.

Fig. 1. Top row: Original sequence with frame numbers. Mid row: Subset
of superpixels manually selected in frame 15 and shown as color-coded
labels. The superpixels in the frames 22 and 30 are generated with our
approach and are displayed using the same label colors to indicate tem-
poral consistency. Bottom row: The soccer players are cut out based on
the selected superpixels. Best viewed in color.
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Using these seeds, the superpixels are then grown on frame
level. A similar propagation approach is applied in [31] in
which the superpixels on each frame are created using par-
tially absorbing random walks. To improve the robustness
of the propagation, only reliable optical flow vectors are uti-
lized. While achieving a more temporally stable superpixel
segmentation and establishing temporal connections
between superpixels in adjacent frames, both approaches
do not handle structural changes like occlusion and disoc-
clusions. This leads to superpixels of in-homogeneous size
in long video sequences similar to the effect shown in Fig. 2.

The problem of structural changes in the video volume
was addressed first in the works of [21], [22], and [23] by
providing a strategy for the creation or splitting as well as
the termination of superpixels.

In [21], a generative probabilistic framework is proposed
to model the segmentation of each frame. The inference is
done on frame level by proposing label changes and accept-
ing them only if they increase the log-likelihood function
of the new segmentation given the observed pixel data.
The superpixelmovement from frame to frame ismodeled by
a Gaussian process initialized using optical flow. To address
the problem of structural changes the authors propose split,
merge and switchmoves in which superpixels can be split up
into two, merged together or take the label of a superpixel
that was previously merged into them, respectively. A set
of proposed moves is only accepted if the new resulting
segmentation increases the joint log-likelihood function.

Thework of [22] is an extension of the superpixel approach
from [32] to video segmentation. It uses color histograms
to represent superpixels and sets up an objective function
which is maximized if the number of populated bins per his-
togram is minimized. The proposed hill-climbing algorithm
optimizes the segmentation by proposing the reallocation
of single pixels or pixel blocks from one superpixel to an adja-
cent one. Changes are accepted if theymaximize the objective
function. Influenced by a parameter called superpixel rate
some frames are selected for termination and splitting of
superpixels[22]. To keep the number of superpixels constant
over time, a new superpixel is created for every terminated
superpixel by splitting off a part from another superpixel.

The decision for termination and splitting is based on the low-
est impact on the objective function.

Our previous works published in [23] and [24] introduce
a hybrid clustering approach which separates the five-
dimensional cluster centers of [14] into local spatial centers
and global color centers. The details of this approach will be
further described in the first part of Section 4. In [23] the
segmentation propagation was done by propagating the
spatial centers using forward optical flow. In [24] it was pro-
posed to look-up the superpixel label in the previous frame
using pixel-wise, backward-directed optical flow. The latter
approach produces a more stable segmentation result as it
propagates the superpixels’ relative positioning (in the fol-
lowing also described as their constellation) as well as their
shape. To handle structural changes in the video volume
both approaches rely on the number of pixels each super-
pixel comprises. While the former predicts the positive and
negative growth using a linear assumption, the latter sets
minimal and maximal thresholds to identify the superpixels
that need to be terminated or split.

While the approaches proposed in [21], [22], [23], and [24]
avoid effects as seen in Fig. 2, the decision to terminate a
superpixel is solely based on the objective function or the
superpixel size. As a result, terminations of superpixels often
do not coincide with the actual occlusion boundaries present
in the video scene. But instead, they happen at rather random
spots in the scene. This misalignment comes from the fact
that none of the termination conditions utilized are specific
to the area surrounding an occlusion boundary.

We therefore propose a new approach to handle struc-
tural changes which explicitly detects occlusion and disoc-
clusion boundaries during the superpixel propagation onto
new frames. By classifying the overlapping parts of the prop-
agated superpixels as either occluded or occluding we gain
knowledge of where the the actual occlusion boundaries lie.
This enables the termination of occluded superpixels. Addi-
tionally, it is revealedwhich superpixel is partially occluded.
This knowledge is used during further optimization of the
segmentation to improve the consistency of the superpixel
flowwith the underlying video scene. Our newmethod inte-
grates seamlessly into our previously published approaches
for temporally consistent superpixels [23] and [24].

3 SUPERPIXELS BASED ON ENERGY-MINIMIZING

CONTOUR-EVOLUTION

Our method for temporally consistent superpixels is based
on the superpixel approach described in [18]. In contrast to
the popular clustering-based method of [14], the contour-
evolving approach of [18] does not need a post-processing
step to ensure the spatial coherency of the resulting super-
pixels. In this Section, we will briefly revisit the basics
of [18].

The problem of a superpixel segmentation can be formu-
lated as a label assignment problem where each pixel n of an
image I is assigned a label l. The labels come from the discrete
set of superpixel labels L. We can evaluate a particular label-
ingL by computing its total energy costEtotalðLÞ as follows:

EtotalðLÞ ¼
X
n2N I

EnðlnÞ : (1)

Fig. 2. Top row: Frame 1 and 60 of the soccer sequence. Second row:
Label maps with temporal consistency but without a method to cope with
structural changes in the video volume. The superpixels in the later part
of the sequence are squeezed together on the left side of the frame,
while on the right side the size of the superpixels has to grow to fully
occupy the newly uncovered image regions. Third row: Label maps cre-
ated with our approach. The superpixels are temporally consistent and
have an equal size over the whole sequence. The silhouette of the player
was marked for visualization purposes. Best viewed in color.
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Here,N I is the set of pixels in image I and ln is the label cur-
rently assigned to pixel n. EnðlnÞ denotes the energy needed
to assign the label ln to pixel n and it is defined by [18] as

EnðlnÞ ¼ ð1�aÞEc;nðlnÞ þ aEs;nðlnÞ : (2)

The energies Ec;nðlnÞ and Es;nðlnÞ are related to the likeliness
of the pixel n belonging to the superpixel with label ln. The
weighting parameter a is a user-selected trade-off factor
steering the superpixel compactness opposed to the sensi-
tivity to fine-grained image structures. The authors of [14]
and [18] chose to model each superpixel by its mean color
value and spatial center. The energy Ec;nðlnÞ is chosen to be
proportional to the euclidean distance between the pixel’s
color value and the superpixel’s average color �mc;l. Equally,
Es;nðlnÞ is selected to be proportional to the pixel’s spatial
position and the spatial center of the superpixel �ms;l. In con-
trast to [18], this work uses the CIELAB color space to per-
form the color distance calculations as it was proposed
in [14]. In order to make the results independent from the
image resolution as well as the selected number of superpix-

els, the spatial distance is scaled with the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jLj=jN I j

p
where j � j is the number of elements in a set.

To find an optimal superpixel segmentation given this
model, one has to find the labeling and the corresponding
superpixel parameter (�mc;l; �ms;l) which minimize the total
energy (1). This can be done using an expectation-
maximization approach where the superpixel labeling and
their parameters are estimated in two separate steps. These
steps are then alternately run in an iterative matter to
approach a localminimum. In the expectation-step of iteration
j the optimal assignment L̂j of the pixels to the superpixels
given the parameters from iteration j� 1 is determined. This
is done by assigning each pixel to the label which minimizes
the energy term (2)

L̂j
n ¼ argmin

lm; m2ðN 4
n[nÞ

EmðlmÞ 8n2N j
C : (3)

Here, as proposed in [18] only the pixels which reside on a
boundary between superpixels (denoted as N j

C) are consid-
ered for a label change. A label change is only allowed to a
label of a pixel which is part of the 4-connected neighbor-
hood around the pixel n. These are denoted withN 4

n.
After assigning each contour pixel to the best matching

neighboring superpixel, their parameters are recomputed
from their assigned pixels in themaximization-step. The itera-
tion stopswhen no assignments to a different label take place
or amaximumnumber of iterations has been performed.

To ensure that the pixels of each superpixel are still
spatially connected through a 4-connected neighborhood,
a simple check is performed before a label change is exe-
cuted. As illustrated in Fig. 3, the check looks at the labels in
the 8-connected neighborhood around the pixel to be exam-
ined as if they are lined up in an array. While traversing the
array, label changes are detected. After each label change,
the check looks up if the label has been seen before. In this
case, the check can only exit successfully if the array can be
further traversed without an additional label change. Other-
wise, assigning a different label to this pixel would result in
a split of the superpixel. Therefore, a label change is not
permitted in this case. Examples for both cases are shown
in Figs. 3b and 3c. A similar approach to verify if a label
change breaks the spatial coherency is described in [33].

Before the first assignment step, the labeling and thus the
superpixel parameters have to be initialized. This can be
done using an initial grid-like or honeycomb-like superpixel
configuration.

4 TEMPORALLY CONSISTENT SUPERPIXELS

The Sections 4.1, 4.2, and 4.3 revisit and explain in more
detail our approach for temporally consistent superpixels
previously published in [23] and [24]. Our new approach
for segmentation propagation and the handling of structural
changes in the video volume is then described in Section 4.4.

4.1 General Idea

Our approach is motivated by the observation that the color
of matching image regions in consecutive frames do not
change rapidly in most cases. In a temporal consistent super-
pixel segmentation these matching regions would be occu-
pied by a single superpixel over multiple frames. Therefore,
the mean color of the associated superpixel is –in a first
approximation-almost constant over time. In contrast to that,
the positions can vary significantly, depending on themotion
which is present in the scene.

To enable the generation of temporally consistent super-
pixels, the color and spatial models of the superpixels are
separated into a global color model, comprising multiple
frames, and multiple local spatial models on frame level.
Thus, following the idea that the color is globally valid while
the spatial position is only locally valid. As a consequence,
each temporally consistent superpixel is modeled by using a
single color mean value for all frames and a separate spatial
center for each frame. The latter preserves the spatial locality
on frame level and the former ensures temporal consistency.

In order to allow for a certain degree of scene changes,
e.g., gradual changes of illumination or color over time, we
introduce a sliding window approach. For this, a window
comprising W consecutive frames is shifted along the video
volume frame by frame. This sliding window contains P so
called past frames, F future frames as well as one current
frame with W¼FþPþ1. An example with W¼5 and
P ¼F ¼2 is depicted in Fig. 4. In this example, the frame k is
the current frame and it is in the center of the slidingwindow.

For the current frame, the resulting, final superpixel seg-
mentation is generated. The segmentation of the past frames is
immutable and thus will not be altered anymore. But through
the global color model it influences the segmentation in the

Fig. 3. The three subfigures exemplarily show pixels at the border
between two superpixels (green and blue). In (b) and (c), a pixel is
marked (orange) and it is examined if a label change (to blue) would vio-
late the spatial coherence constraint. The eight neighboring pixels
(marked by the circling arrow) are plotted as an array on the bottom of
each subfigure. While the label in the array of (b) only changes once and
thus a change is valid, the label in (c) changes a second time from blue
to green which indicates an invalid change. Best viewed in color.
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current and future frames as these are still mutable and thus
can change during the optimization. The future frames help to
adapt to changes in the scene. The past frames are conserva-
tive and try to preserve the superpixels color value over time.
If more past than future frames are used, the update of the
color centers is more conservative. If more future than past
frames are used, the update is more adaptive. As the optimi-
zation procedure utilizes global color models for the whole
sliding window and local spatial models for each frame we
call it a hybrid optimization which will be explained in detail
below.

4.2 Hybrid Optimization

The energy function (1) and the energy term (2) as well as
the iterative optimization algorithm explained in Section 3
have to be extended to the idea of the global color and local
spatial models. First, we extend the energy term (2) with the
frame index k as the energy Es;n is now proportional to the
distance to the spatial centers in the specific frame

Enðln; kÞ ¼ ð1�aÞEc;nðlnÞ þ aEs;nðln; kÞ : (4)

Second, we need to sum up the energies of all pixels in all
frames inside the sliding window to calculate the total
energy with regard to the current frame k

EtotalðLW
k Þ ¼

XkþF
k¼k�P

X
n2N k

Enðln; kÞ ; (5)

where N k is the set of pixels in the frame k and LW
k denotes

the labeling of all pixels in all frames inside the sliding win-
dow around the current frame k.

Third, the iterative optimization scheme is adopted to the
hybrid approach as explained below and is summarized in
Algorithm 1.

After each shift of the sliding window, a number of J
iterations of the hybrid optimization algorithm is per-
formed. In the expectation-step, the contour pixels of the
mutable frames, i.e., the current and the future frames, are
reassigned to the best matching neighboring superpixel
to minimize the energy term (4). The color-energy Ec;n is
proportional to the euclidean distance to the global color
mean value of the superpixel �mc;l. The spatial-energy Es;n is

proportional to the euclidean distance to the spatial center
�ms;l;k in frame k.

Algorithm 1. Hybrid Optimization of the Segmentation
Inside a Sliding Window Positioned Around the Current
Frame with Index k. LW;j

k Denote the Labeling of all Pix-
els Currently Inside the Sliding Window at Iteration j

Input: W frames in sliding window around k; initial labeling
LW;0
k

Output: updated labeling LW;J
k

determine parameters of color and spatialmodels for givenLW;0
k ;

for j 2 ½1; J� do
foreach mutable frame k in sliding window do
reassign contour pixels N j

C;k according to Eq. (3)
given the model parameters of j� 1;

for all frames k in sliding window do
if k is mutable frame then
update local spatial models in k;

end
accumulat e global color information;

end
update global color models from accumulated information;

end

In the maximization-step, the parameters of the global
color model for each superpixel are updated using the accu-
mulated color information of all pixels in all frames inside
the sliding window

�mc;l ¼
1P

k2W jN l;kj
X
k2W

X
n2N l;k

l;a;b½ �Tn;k: (6)

Where N l;k is the set of pixels assigned to the superpixel

with label l in frame k of the sliding window. l;a;b½ �Tn;k is the
transposed color vector of the pixel n in frame k.

The spatial models are updated locally per frame using
only the image coordinates of the pixels that are assigned to
this superpixel in the corresponding frame

�ms;l;k ¼
1

jN l;kj
X

n2N l;k

x;y½ �Tn : (7)

Here, x;y½ �Tn is the transposed spatial position vector of pixel
n. For our experiments we use J¼5 iterations after each
shift of the sliding window. During our evaluation it turned
out that the gain using a higher number of iterations is
negligible.

4.3 Initialization of Sliding Window

Because the position of corresponding image regions and
thus the superpixel position can differ in consecutive
frames, a concurrent initialization of all frames of the sliding
window is not practicable. Therefore, we propose a succes-
sive filling of the sliding window according to the scheme
visualized in Fig. 5. During the initialization of the sliding
window as well as afterwards, frames are added to the slid-
ing window. The segmentation of these added frames have
to be initialized as well. To better distinguish between the
two types of initialization, we refer to the frame initializa-
tion as segmentation propagation. The details to this propa-
gation step can be found in the Section 4.4.

Fig. 4. Sliding window approach. Bottom row: Frames inside the sliding
window (non-transparent) are divided into three groups. Top row: Corre-
sponding label maps.
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At the start, the sliding window is empty. The segmenta-
tion of the first frame of a video sequence to enter the sliding
window cannot be propagated from former frames. There-
fore, it is initialized by a regular grid- or a honey-comb-like
arrangement of superpixels as proposed in [18]. This frame is
positioned at index kþF in the sliding window. As a future
frame its segmentation is mutable. Therefore, an energy-
minimization with regard to Eq. (4) is performed. Then, the
sliding window is shifted, whereby a new frame enters the
window at position kþF . The old frame ismoved to kþF�1.
The initial segmentation of frame kþF is created by propa-
gating the current segmentation of frame kþF�1. The prop-
agation procedure only roughly adapts the segmentation to
the new frame. Therefore, after each propagation step several
optimization iterations as described in Section 4.2 are per-
formed to fit the superpixel boundaries to the frame content.

This procedure is repeated until all positions in the slid-
ing window are occupied. Then the generation of the tem-
porally consistent superpixels can further proceed by
repeatedly shifting the sliding window by one frame as
described above until the video sequence is completely
processed. After each shift the superpixel segmentation of
frame k�1 of the sliding window is stored, which is the first
past frame and thus immutable.

4.4 Segmentation Propagation and Handling of
Structural Changes

After a new frame has entered the sliding window the latest
segmentation of the previous frame needs to be propagated
onto the new frame. As image regions can move signifi-
cantly from frame to frame, a simple copy of the previous
segmentation as described in [22] can be error-prone in
many situations. This is especially the case in videos with
large object motion or camera movement. Therefore, the
segmentation needs to be warped to roughly fit the content
of the new frame.

In [25] and [23], the weighted average optical flow is
used to propagate superpixel seed-points or their spatial
centers onto new frames. The weighting function gives opti-
cal flow vectors near the superpixel center more weight
than vectors at the superpixel boundary. These boundary
vectors tend to be more noisy and inaccurate when the
superpixel boundary coincides with an object boundary, as
the smoothness assumption, which is part of most optical
flow algorithms, does not hold at these locations when the
motion direction of the object differs from the motion direc-
tion of the background.

While using the averaged optical flow to project seed
points or spatial centers gives a certain degree of robustness
against noise and inaccuracies, it results in a complete loss of
the superpixel shape information. This can lead to a higher

volatility in the superpixels boundaries and less stable spa-
tial constellations over time as it has been shown in [24].
Therefore, [24] proposed to use a pixel-wise, backward-
directed optical flow to propagate the segmentation. By look-
ing-up the label for each pixel in the previously segmented
frame, using the backward-directed flow vectors, shape and
constellation information are preserved.

But as the reliance on a pixel-wise optical flow can be
error-prone when the noise level increases, we propose to
use the weighted averaged optical flow to propagate the
complete superpixel shapes in a forward directed manner.
This approach leverages the robustness of the averaged opti-
cal flow while it concurrently exploits the constellation and
shape preserving behavior of a pixel-wise propagation. To
propagate the segmentation, we shift each superpixel by the
weighted average optical flow vector. The weighted average
optical flow vectors are gained by applying a symmetric,
two-dimensional Gaussian function on the flow vectors of
each superpixel and averaging over the weighted vectors.
Each weighting kernel is centered around the spatial center
of the superpixel. We select the standard deviation sw of the
weighting function to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jN I j=4 � jLj

p
which corresponds to

the radius of the average sized superpixel in the frame.
If the superpixels follow their underlying image regions

over time, the structural changes inherent in the video vol-
ume lead to the squeezing and expanding effects shown in
Fig. 2. To avoid this effect and to satisfy the homogeneous
superpixel size constraint, the superpixels whose corre-
sponding image regions become occluded have to be termi-
nated. Simultaneously, new superpixels have to be created
when new image regions become disoccluded.

Due to the nature of the proposed forward propagation,
the locations of occluded and disoccluded image regions
can be directly extracted from the propagated superpixel
labeling. It can be seen in Fig. 6 that the detection of gaps
and thus disocclusion in the propagated superpixel labeling
is trivial. For the occlusion case we need to determine which
of the superpixels is the occluding one.

Fig. 5. The sliding window is initialized from the front to the back positions. After J iterations (cf. Algorithm 1), the sliding window is shifted and the
segmentation of the current frame moves into the area of the past frames. As these segmentations are not altered anymore, they can be stored to
disk which reduces the delay of the algorithm to Fþ1 frames.

Fig. 6. Schematic example of two adjacent superpixels being propagated
towards each other by optical flow. The overlapping areas (dark blue)
can yield essential information about the structure of the video as it indi-
cates the occlusion of an image region. Similarly, a gap in the propa-
gated superpixel labeling indicates a disoccluded region (light blue).
Best viewed in color.
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We therefore propagate the superpixels successively in
an arbitrary order onto the new frame. Simultaneously,
the positions of any overlapping regions and the involved
superpixels are recorded. Afterwards, we determine for
the individual pixels which is the topmost superpixel at
this location. This is done by finding the optimal labeling of
the pixels given the image data and the superpixel color
models. To avoid any interference by the compactness and
homogeneous size constraints of the superpixels, we do not
employ the same optimization strategy as described above.
Instead, we represent the overlapping regions as a graph
structure and apply the graph-cut optimization algorithm
[34] to solve the multi-label assignment problem. This pro-
cedure is inspired by [15] where superpixels are created by
laying out overlapping patches on the image.

In the graph, each vertex represents a pixel and can be
assigned a label from the discrete set of overlapping super-
pixel labels LOL. The edges between vertices indicate neigh-
boring pixels. As the optimal labeling of the overlapping
areas is determined for each propagated frame indepen-
dently, we will skip the frame index in this passage. The
quality of every possible labeling of the graph LOL ¼
lnjln 2 LOL; n 2 N OLf g can then be assessed by an energy

function we define as follows:

EOLðLOLÞ ¼
X

n2NOL

DnðlnÞ þ g
X

n2NOL

m2N 4
n

Vn;mðln; lmÞ : (8)

Here, N OL is the set of pixels which are part of the overlap-
ping area. The decision about the topmost superpixel should
depend on the similarity of the image data to the appearance
models of the possible superpixels. We therefore define the
unary term as

DnðlÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2ps2

C;l

p exp � E2
c;n

2s2
C;l

� �
; if l 2 LOL;n

1; else:

8<
: (9)

With LOL;n denoting the set of superpixel labels which over-
lap at the pixel n and s2

C;l denoting the color variance of the
superpixel l. As the unary term only includes the color
depending energy of Eq. (4), there is no interference of the
superpixel compactness constraint enforced through Es. To
still favor equally labeled neighbors and thus a spatially
coherent labeling, we select the pairwise term Vn;m to be

Vn;mðln; lmÞ ¼ exp � l;a;b½ �Tn� l;a;b½ �Tmj j2
2s2

C

� �
; if ln 6¼ lm

0; else

8<
: (10)

where s2
C is the variance of all color differences in the over-

lapping region. For our experiments we used the implemen-
tation of [35] and performed two alpha expansion iterations
to find the optimal labeling.

Although the pairwise term (10) favors label consistency,
it is not guaranteed that the resulting superpixels are spa-
tially coherent. For those rather rare cases, we determine
the largest fragment of each superpixel and set the other
smaller fragments to an invalid label. These regions are
then handled in the contour evolution procedure described

in Section 4.2 by automatically assigning them to a directly
connected valid neighbor.

Given the final labeling of the overlapping regions, we
store for each superpixel the pixels which are not part of the
final labeling. This results in a set of occluded pixels
for each superpixel and frame denoted by N OC;l;k. To make
the decision on which superpixel to terminate, we observe
the number of occluded pixels per superpixel over time and
check after each propagation if the major part of the
superpixel l got occluded

X
k2W

jN OC;l;kj > jN l;PþFþ1j : (11)

jN l;PþFþ1j denotes the number of pixels assigned to super-
pixel l in the last frame of the sliding window. To terminate
a superpixel, it is removed from all future frames (compare
Fig. 4) by assigning an invalid label to its pixels in these
frames. This also excludes such a superpixel from further
propagation steps.

To keep the number of superpixels constant over time,
we split up as many superpixels as were terminated before.
In order to increase the compliance of the superpixel flow
with the optical flow present in the scene, the superpixels in
the surrounding of the gaps in the propagated superpixel
labeling are preferred. The splitting is done similar as
described in [17].

In addition to the squeezed and expanded superpixels,
Fig. 2 illustrates a second effect which can be described
as superpixels being pushed aside by other superpixels.
The effect and its cause are schematically depicted in the
left column of Fig. 7, where the green and yellow superpixel
are gradually pushed to the right although the magnitude
of the optical flow inside these superpixels is virtually zero
in all frames.

The reason for this effect lies in the homogeneous size con-
straint enforced during the optimization procedure which
is performed after each propagation step. When the spatial
centers (indicated by crosses) are recalculated, the center of
the middle superpixel will be far more right than its initially
predicted spatial center. During the optimization, themiddle
superpixel will therefore regain size because the spatial

Fig. 7. The left superpixel (red) is propagated (indicated by the arrow)
towards two stationary superpixels (yellow, green). Without the knowl-
edge that the yellow superpixel becomes occluded by the red superpixel
(left column) its newly calculated spatial center will have an offset com-
pared to the propagated center. The offset of the spatial center will lead
to a shift of the yellow superpixel as the spatial term of Eq. (2) enforces
the homogeneous size constraint (indicated by the dotted circle). This
effect is further propagated and results in a shift of the neighboring
(green) superpixel. By utilizing the occlusion information to compute the
“true” spatial center (right column) the drift can be avoided resulting in a
more accurate superpixel movement.
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distance term in Eq. (2) favors equally sized superpixels
(indicated by the dotted outline). This in return will lead to a
right-shift of the right superpixel. This observation is similar
to observations made in [21] about the superpixel flow at
image boundaries.

In order to prevent this false superpixel flow, we propose
to utilize the knowledge about the occluded superpixel frac-
tions. To stop the centers from shifting back, the hidden
parts of the superpixels are integrated during the recalcula-
tion of the spatial center in Eq. (7) as follows:

�ms;l;k ¼
1

jN Aj
X

n2N l;k

x;y½ �Tn þ
X

n2NOC;l;k

x;y½ �Tn

0
@

1
A : (12)

Here, jN Aj is a substitute for jN l;kj þ jN OC;l;kj. The principle
is illustrated in the right column of Fig. 7.

As the complete occlusion of a superpixel in general
occurs over the term of multiple frames, the hidden part of a
superpixel also needs to be propagated when a new frame is
initialized. We therefore propagate the occluded fraction of a
superpixel, by shifting it with the same displacement vector
½u; v�Tl used for the visible part. Subsequently, we merge
the propagated, hidden fraction of the superpixel with any
pixels that get newly occluded in the current propagation
step. Thus, the set of occluded pixels of a superpixel l in a
frames k becomes

N 0
OC;l;k ¼ N OC;l;k [ x;y½ �Tnþ½u; v�Tl j 8 n 2 N OC;l;k�1

n o
: (13)

5 EXPERIMENTS

In this Section, we will compare our method to the state-of-
the-art, streaming-capable temporally consistent superpixel
and supervoxel methods. First, we will describe the bench-
mark metrics used during the evaluation. Subsequently, the
experimental setup and the derivation of the parameters for
the proposed method will be described. Finally, we will
present and discuss the results.

5.1 Benchmark Metrics

Recently, the computer vision community actively contrib-
uted to the field of video segmentation benchmarks as e.g.,
in [36]. While these benchmarks are often especially targeted
at video object segmentation, there has been a lot of work on
metrics especially tailored to evaluate temporal superpixel
and supervoxel segmentations. In order to account for the
special requirements for the evaluation of a video overseg-
mentation, this paper closely follows the protocol and met-
rics utilized in [21] and [28] to evaluate temporally consistent
superpixels and supervoxel methods. To assess the video
segmentation quality, five metrics are used which are tai-
lored to the evaluation of supervoxel and video segmenta-
tion algorithms and indicate the quality of the spatio-
temporal segmentation. As the quality of the spatio-temporal
segmentation is as important as the quality of the segmenta-
tion on frame level, an additional set of three benchmark
metrics suitable for evaluating the image segmentation qual-
ity on frame level are included. All benchmark metrics will
be revisited briefly in the following. For a more thorough
explanation please refer to [12], [16], [21], and [28].

3D Undersegmentation Error (3D UE). This metric was first
proposed by [37]. It counts the number of voxels bleeding out
of the ground truth segmentation volume. Given a segmen-
tation with non-overlapping segments s1; s2; . . . ; sM and a
ground truth segment gn, the 3D undersegmentation error
is calculated as follows:

UEðgnÞ ¼
P

ðsmjsm\gn 6¼;Þ jsmj
h i

� jgnj
jgnj : (14)

Here, jsmj denotes the number of voxels of the segment. The
error is then averaged over all ground truth segments.

3D Segmentation Accuracy (3D SA). Also proposed [37],
this metric denotes the fraction of the video volume that can
be correctly reproduced by a given segmentation. To calcu-
late the metrics, each segment is first assigned to the ground
truth segment with which it has the maximum overlap. Sub-
sequently, the overlap of the segments with the assigned
ground truth segments is counted and divided by the size
of the whole video volume

SA ¼ 1

N

XN
n¼1

P
o2On

ðjso \ gnjÞ
jgnj ; (15)

where N is the number of ground truth segments and On is
the set of segments so assigned to gn.

Temporal Extent (TEX): This metric was introduced in [21]
for measuring the ability to track regions over time by calcu-
lating the mean duration of the spatio-temporal segments. By
evaluating this metric in conjunction with the 3D segmenta-
tion accuracy or the 3D undersegmentation error, it provides
a suitable measure to judge how much of the temporal con-
sistency inherent in the video volume has been revealed by
a supervoxel segmentation. The combination with another
metrics, penalizing the erroneous crossing of object bound-
aries, is necessary as a long temporal segment duration is
only valuable together with a high quality spatio-temporal
segmentation. It should be noted that the metrics described
above only indicate if a superpixel crossed any object bound-
aries, as defined by the ground truth segmentation. However,
the consistency of their shape or their relative positioning
inside the boundaries of an object are completely ignored.
In order to measure this type of temporal consistency, the
label consistency metric as proposed in [21] is utilized during
the evaluation aswell.

Label Consistency: This metric measures the consistency of
the superpixel flow with the underlying image movements
and penalizes any temporal inconsistency in the shape as
well in the constellation of the superpixels. It utilizes
ground truth optical flow information to propagate the
superpixel labeling of a segmented frame onto the next
frame and determines the number of pixels that agree
between the propagated labeling and the segmentation gen-
erated by the algorithms. The label consistency is given as
the ratio between the number of pixels which agree and the
total number of pixels per frame averaged over all frames.

Explained Variation (EV). This metric was proposed in [12]
for the evaluation of superpixel segmentations. It indicates
how well the original image content can be represented
with a given oversegmentation as a representation of lower
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detail. Its extension to the video domain, first proposed
in [37], can be calculated as follows:

EV ¼
P

nð�mc;n � �mcÞ>ð�mc;n � �mcÞP
nð�xc;n � �mcÞ>ð�xc;n � �mcÞ

: (16)

Here, ~mc denotes the global mean color vector and ~xc;n is the
color vector at the voxel position n. The vector ~mc;n is the
mean color vector inside the segment that the voxel n is
assigned to.

Boundary Recall Distance (BRD). The boundary recall
distance was proposed in [21] and measures the average
distance to the next boundary present in the ground truth
segmentation. In contrast to the popular 2D boundary
recall, the boundary recall distance does not require the
selection of a fixed threshold by the user. For each frame k it
can be independently calculated as follows:

BRDðkÞ ¼ 1

jN C;gt;kj
X

i2NC;gt;k

min
j2NC;seg;k

dði; jÞ: (17)

Here, NC;gt;k and NC;seg;k are the sets of boundary pixels of
the ground truth segmentation and the superpixel segmen-
tation, respectively. dð�; �Þ denotes the euclidean distance
between two boundary pixels.

Variance of Area (VoA). It was e.g., stated in [21] that a
representation should be local to be meaningful. Therefore,
the size of superpixels should be approximately equal in all
areas of the frame. To measure this property, the variance of
area (VoA) metric was proposed in [16]. It can be calculated
for a frame k as follows:

VoAðkÞ ¼ E
Am;k

�Ak

� �2
" #

: (18)

Here, E �½ � is the expectation value,Am;k is the area of a super-
pixel in frame k belonging to a supervoxel m and �Ak is the
mean superpixel area in frame k. Themetric is closely related
to the superpixel size variation proposed in [21], but due to
the normalization by the average superpixel size its value is
independent of the image and superpixel resolution.

Superpixel Compactness (CO). As some applications favor
more compact superpixels (e.g., to efficiently encode the
contours of a superpixel segmentation), it was proposed
in [18] to use the superpixel compactness as a benchmark
metric. The compactness is calculated by weighting the iso-
perimetric quotient Qm of a superpixel m (as it was also
defined in [16]) with the relative superpixel size as follows:

COðkÞ ¼
X
m

Qm
Am;k

jN kj : (19)

In [21] the 3D benchmark metrics like undersegmentation
error and segmentation accuracy are plotted over the average
number of superpixels per frame. It was argued that different
video lengths and contents require in general a different num-
ber of supervoxels. As thereby the temporal consistency of the
spatio-temporal segmentation is not taken into consideration
in the 3D metrics, we only plot the boundary recall distance,
variance of area and the superpixel compactness over the

average number of superpixels per frame. The remaining
metrics are plotted over the number of supervoxels.

5.2 Experimental Setup

To evaluate the segmentation performance of our approach,
we perform a series of experiments on the data set provided
by [39] (BuffaloXiph) as well as the more diverse data set
of [40] (BVDS). While the former is a collection of eight
video clips with around 80 frames per clip the latter pro-
vides 60 clips with up to 121 frames. The data set of [39] pro-
vides one ground truth segmentation for every frame. For
the data of [40] ground truth segmentation is provided
by [41] for every 20th frame by four different human sub-
jects. All the ground truth data is multi-label. To measure
the label consistency, we use the data set of artificial scenes
provided by [42].

For a thorough evaluation, we implemented our approach
in C++ and use the optical flow method provided by [43] for
the segmentation propagation. The weighting term g of
Eq. (8) is set to the common value of 50 following [44].
Besides the user selected number of superpixels per frame
jLj, the proposed method contains parameters to control
certain aspects of the resulting segmentation. Namely, this is
the configuration of the sliding window (F and P ) and the
spatial weight a of Eq. (4).

The following passage describes the set of experiments
which were conducted to select the optimal parameters.
From preliminary analyses it is known that the segmentation
quality can be increased, up to some extent, by selecting a
larger number of past frames. The influence of the number of
future frames, on the other hand, is compared to the influence
of the past frames neglectable. Hence, we set F ¼2 for all
experiments. Fixing the number of future frames leaves two
remaining parameters to be selected, namely a and P . The
value of these parameters will be selected by optimizing for
the three main benchmark metrics for spatio-temporal seg-
mentation quality. Namely, the 3D segmentation accuracy
(SA), 3D undersegmentation error (UE) and temporal extent.
Although very important, the label consistency was not
regarded for these experiments as they require ground truth
optical flow. To avoid any overfitting on the test data, the
optimization is performed on a separate data set, provided
by [38]. The Segtrack data set consists of six video clips with
up to 73 frames and a binary ground truth segmentation for
each frame. The parameter optimization is achieved by per-
forming a grid search in the intervals a ¼ ½0:86; 0:98� and
P ¼ ½2; 20� of the parameter space. For each combination of
parameters a segmentation of the whole Segtrack data set in
seven levels of coarseness is performed. The levels were
selected to be equidistantly distributed in the range of 50
to 950 superpixels per frame. The final benchmark value for
each of the three metrics is yielded by averaging over
all sequences and levels of coarseness. As a result, a single
value �zp for each parameter combination ða; P Þ and bench-
mark metric p 2 fSA;TEX;UEg is gained. The sets of values
for the different metrics are separately normalized to lie
in the interval of zero and one. Further, the scale of the
3D undersegmentation error is inverted and thus higher
denoted a better result for all �zp. The results for the selected
range of parameter combinations are depicted as color coded
maps in Fig. 8.
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The plot of the 3D segmentation accuracy in Fig. 8a
shows only a slight increase in 3D segmentation accuracy
with a rising number of past frames. If, on the other hand,
the spatial weight is selected to be too high the segmenta-
tion accuracy is decreased severely. This is different for the
temporal extent and the 3D undersegmentation error, as it
can be seen in (b) and (c) of Fig. 8. Here, both metrics show
an improvement with increasing compactness of the super-
pixels. In contrast to this behavior, the influence of the num-
ber of past frames has an inverse nature. While the temporal
extent decreases with a raising number of past frames, the
segmentation error simultaneously improves.

In order to choose the optimal set of parameters, all three
metrics have to be regarded simultaneously. We therefore
propose, to combine the individual terms �zpða; P Þ in a multi-
plicative way, to form the combinedmetric �ztotal as follows:

�ztotalða; P Þ ¼ �zSAða; P Þ � �zTEXða; P Þ � �zUEða; P Þ: (20)

It should be noted that the scaling of the terms aswell as their
combination could have been chosen differently, e.g., a
weighted sum where the weights reflect application specific
preferences. But in the absence of any specific requirement
the multiplicative approach was chosen, to avoid the need
for an explicit weighting of the terms. This selection provides
a rather general optimal choice of the parameters. The result
of the combination is plotted in Fig. 8d. It can be seen that for
the chosen scaling and combination the optimal band of
parameters lies around a¼0:94 to a¼0:96with a tendency to
higher numbers of past frames. For the following evaluation,
the parameters are selected to be a ¼ 0:96 and P ¼ 16, as
they form themaximumvalue in the chosen representation.

To evaluate the proposed approach,we compare it against
the three state-of-the-art methods for spatio-temporal over-
segmentation offering streaming capabilities. Namely, the
streaming hierarchical video segmentation method (sGBH)
of [30], temporal superpixels (TSP) [21] and online video
seeds (OVS) [22]. Additionally, we included our previously
published method [24] in all experiments (here abbreviated
by TCS). The methods were chosen because they only pro-
cess a subset of frames at once and thus are in principle capa-
ble of a streaming processing mode where no simultaneous
access to thewhole video clip is required.

For the comparison, the implementations and parameters
provided on the authors’ websites were used to generate
multiple spatio-temporal oversegmentations with different

levels of detail, i.e., different numbers of supervoxels. For a
comparison, we selected the number of superpixels jLj
(where applicable) in such a way that the number of gener-
ated supervoxels is approximately identical for all app-
roaches. Some of the benchmark results were produced
using the code provided by [28].

5.3 Experimental Results

The benchmark results for data sets with available ground
truth segmentation are depicted in Figs. 9 and 10. The for-
mer contains the spatio-temporal benchmark metrics, while
the latter contains the 2D benchmark metrics. In each figure
the left column shows the results on BuffaloXiph and the
right column the results on BVDS.

Fig. 8. Color coded plots for the 3D segmentation accuracy �zSAða; P Þ, temporal extent �zTEXða; P Þ, and 3D undersegmentation error �zUEða; P Þ. For
each rectangle in (a) to (c) the metrics were averaged over all sequences of the Segtrack [38] data set and seven levels of coarseness. The color
maps are adjusted to the minimum and maximum values of the normalized metrics. Here, the scale of the 3D undersegmentation error is inverted,
so red means better in all plots. In (d) the multiplicative combination is shown.

Fig. 9. Results for spatio-temporal benchmark metrics. The left column
shows the results for the BuffaloXiph [39] data set, the right column for
the BVDS [40] data set. Note that the metrics are plotted over the num-
ber of supervoxels. Higher values are better except for the 3D underseg-
mentation error (3D UE).
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For both data sets our algorithm performs best in 3D
undersegmentation error and for most ranges of supervoxel
numbers in 3D segmentation accuracy. The temporal extent
is slightly decreased when compared to our previous ver-
sion, while the variance of area is slightly increased. Though,
the increase in variance of area is significant in some areas of
the graph (nearly doubled in the lower numbers of superpix-
els per frame) the overall value is still quite low. The increase
can be explained by the partially occluded superpixels being
considered the first time in this work. Because the occluded
superpixel parts are only considered during the optimiza-
tion, they are not part of the final segmentation. As a result,
the homogeneity constraint on the superpixel size is not ful-
filled entirely in areas where occlusion happens which natu-
rally leads to an increase in variance of area.

Fig. 11 shows color-coded label maps for all approaches
highlighting the differences in compactness in a qualitative
manner. For each approach a level of detail was chosen
showing approximately 1,500 or 400 superpixels per frame.
A frame of our previously published approach [24] is not

shown as the difference in compactness is not noticeable.
With the compactness parameter a in Eq. (4) our method
and TCS could be made more sensitive to fine-grained
details achieving a better boundary recall distance at the
price of a lower compactness. But as stated in [1], [13], [18]
it is beneficial to have compact superpixels. It e.g., allows
for a better capturing of spatially coherent information. In
addition, it simplifies the execution of subsequent process-
ing steps, as e.g., compact superpixels tend to have a lower
average number of neighbors which eases the evaluation of
neighborhood relations. Additionally, further calculations
like feature extraction can be performed on almost equally
sized segments.

Fig. 12 shows the results for the label consistency bench-
mark where TSP performs best and our proposed method
second best. Compared to [24] our new approach produces
more consistent results for all number of supervoxels. A
qualitative comparison of the label consistency between [24]
and our newly proposed method can be seen in Fig. 13.
Additionally, a failure case of the proposed method is
shown in Fig. 14. Here, the reflection of a lamp post breaks
the color consistency assumption of the image regions our
method is relying on.

Fig. 10. Results for the 2D benchmark metrics. The left column shows the
results for the BuffaloXiph [39] data set, the right column for the BVDS [40]
data set. Note that the metrics are plotted over the number of superpixels
per frame. Lower values are better except for the superpixel compactness
(CO). For BVDS the curve of sGBH is out of the range in the variance of
area diagram. It starts at about 7.5 and linearly increases up to 13.

Fig. 11. Comparison of color-coded label maps. All frames have app-
roximately 1,500 (first row) or 400 (second and third row) superpixels
(frames are partially cropped for display purposes). The label maps
show that our proposed method and TSP produce more compact super-
pixels than sGBH and OVS. Best viewed in color.

Fig. 12. Results for the label consistency benchmark showing that our
approach significantly improves the consistency when compared to [24].

Fig. 13. Qualitative label consistency comparison with [24] on a
sequence from [45]. In front of the car, the newly proposed approach
correctly deletes the superpixels which should disappear due to the
occlusion. Behind the car, new superpixels are created (not displayed)
which prevent the superpixels from slipping down.

Fig. 14. Failure case in which the color consistency assumption is not ful-
filled. Due to the reflection of a lamppost, the superpixels on thewindshield
of the car diverge from the underlying image flow. Best viewed in color.
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5.4 Complexity Considerations

In [14], the closely related SLIC superpixel approach is
approximated to have a complexity of OðjN I jÞ. Using this
approximation, our approach for temporally consistent
superpixels has a complexity of OðjN I jjW jVÞ, where V is
the number of frames in the video sequence. As it holds that
jW j�V < jN I j for reasonably long video sequences (e.g.,
full feature film length) and frames with mega-pixel reso-
lution, the complexity of our approach is OðjN I jVÞ. Com-
pared to [30] that has a complexity of OðjN I jV log jN I jÞ it
shows that our approach is more efficient with regard to the
computational complexity.

5.5 Application to Interactive Video Segmentation

This section is dedicated to show the advantages of the pro-
posed method for temporally consistent superpixels on the
task of interactive video segmentation as it was described
e.g., in [46]. In contrast to a fully automatic segmentation,
the interactive video segmentation creates a binary segmen-
tation of a video with the support of a human operator who
roughly marks the region of interest with strokes. Given an
initial input from the user, a binary segmentation is created
by applying a graph cut on the voxel graph. Subsequently,
the resulting segmentation can be interactively improved
by the user through a refinement of the given strokes. The
task of interactive video segmentation was chosen for this
evaluation because it is crucial for a positive user experience
to minimize the waiting time after an input has been given.
It has been shown e.g., in [46] that by performing the graph
cut on top of a video oversegmentation the waiting time for
the user can be significantly decreased. Simultaneously, it is
of high importance that the underlying oversegmentation
is accurate enough to enable a final segmentation result of
high quality. To evaluate the supervoxel and superpixel
methods on the task of interactive video segmentation,
we follow the evaluation protocol described in [19]. The
described protocol avoids the need for an extensive user
study by performing an offline evaluation. For the offline
evaluation only the initial segmentation is considered which
is obtained after a user has given an initial input. For a fair
comparison, the user inputs are the same for each of the
different oversegmentation algorithms whose outputs
are processed by the graph cut algorithm. This implicitly
assumes that by improving the quality of the initial segmen-
tation a better or equivalent final video segmentation can be
achieved with fewer user effort. Additionally, an improved
initial segmentation should eventually result in a shorter
overall time the user has to stay in the loop, as less user
interactions are necessary. The evaluation was performed
on the 40 training sequences of [40] at the highest available
resolution. A segmentation level of about 3000 superpixels
per frame was chosen for each approach. For each video
sequence a pair of input strokes was utilized which was
provided by [47]. The resulting segmentation for each over-
segmentation approach was compared against the ground
truth data by calculating the misclassification error rate. For
this purpose the ground truth data was manually converted
into a binary segmentation. A more thorough explanation
of the task of interactive video segmentation and the bench-
mark process can be found in [19] and [47].

In addition to the four competitive oversegmentation
approaches of the previous section, the proposed method is

compared to a mean shift segmentation [48] (performed on
frame level) and a graph cut applied on voxel-level. Table 1
shows the misclassification error rate for all five overseg-
mentation approaches and the voxel-wise graph. It can be
seen that the usage of OVS increases the error rate when
compared to the voxel-level approach. On the other hand,
our newly proposed approach nearly cuts the error rate in
half when compared to the voxel-level approach. A more
detailed version of Table 1 as well as qualitative results can
be found in the supplemental material, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2018.2832628.

6 CONCLUSION

In this paper, we propose a novel approach for superpixels
for video content. The proposed approach employs a sliding
window comprising multiple consecutive frames, which are
grouped into immutable past frames and mutable current
and future frames. Whereas the future frames are intended
to adapt to changes in the video volume, the past frames are
conservative and try to preserve the superpixels color value
over time. Our method is formulated as an efficient con-
tour-evolving optimization scheme which adapts the super-
pixels only at their boundaries.

By propagating whole superpixel shapes using a weight-
ed average optical flow, our method is able to preserve the
shape and constellation of the superpixel segmentation over
time while simultaneously detecting occluded superpixels
and disoccluded image regions. This knowledge is used
to adapt the superpixel segmentation to structural changes
in the video volume and to improve the consistency of
the superpixel flow with the movement of the underlying
image patches.

In a thorough, in-depth evaluation based on established
benchmarks, the proposed approach is compared to state-
of-the-art, streaming-capable spatio-temporal oversegmen-
tation methods. The evaluation shows that our approach
produces highly competitive results making it an excellent
basis for all tasks requiring temporal consistency and a high
segmentation accuracy as e.g., video segmentation and
tracking applications. This is further shown by comparing
the streaming-capable approaches as basis for the task of
interactive video segmentation where the proposed app-
roach provides the lowest overall misclassification rate.
Further details on the comparison can be found in the sup-
plemental material, available online.
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