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Abstract

This paper addresses the problem of 3D human pose es-
timation from single images. While for a long time human
skeletons were parameterized and fitted to the observation
by satisfying a reprojection error, nowadays researchers di-
rectly use neural networks to infer the 3D pose from the ob-
servations. However, most of these approaches ignore the
fact that a reprojection constraint has to be satisfied and are
sensitive to overfitting. We tackle the overfitting problem by
ignoring 2D to 3D correspondences. This efficiently avoids
a simple memorization of the training data and allows for
a weakly supervised training. One part of the proposed re-
projection network (RepNet) learns a mapping from a dis-
tribution of 2D poses to a distribution of 3D poses using
an adversarial training approach. Another part of the net-
work estimates the camera. This allows for the definition of
a network layer that performs the reprojection of the esti-
mated 3D pose back to 2D which results in a reprojection
loss function.

Our experiments show that RepNet generalizes well to
unknown data and outperforms state-of-the-art methods
when applied to unseen data. Moreover, our implementa-
tion runs in real-time on a standard desktop PC.

1. Introduction

Human pose estimation from monocular images is a very
active research field in computer vision with many appli-
cations e.g. in movies, medicine, surveillance, or human-
computer interaction. Recent approaches are able to infer
3D human poses from monocular images in good quality
[27, 8, 21, 23, 28, 32, 24, 20, 19, 31]. However, most re-
cent methods use neural networks that are straightforwardly
trained with a strict assignment from input to output data
e.g. [27, 8, 21, 23, 28, 32, 24, 19]. This leads to surprisingly
impressive results on similar data but usually the generaliza-
tion to unknown motions and camera positions is problem-

Figure 1. Our network predicts 3D human poses from noisy 2D
joint detections. We use weakly supervised adversarial training
without 2D to 3D point correspondences. Our critic networks en-
forces a plausible 3D pose while a reprojection layer projects the
3D pose back to 2D. Even strong deformations and unusal camera
poses can be reconstructed.

atic. This paper presents a method to overcome this problem
by using a neural network trained with a weakly supervised
adversarial learning approach. We relax the assumption that
a specific 3D pose is given for every image in the train-
ing data by training a discriminator network –widely used
in generative adversarial networks (GAN) [9]– to learn a
distribution of 3D human poses. A second neural network
learns a mapping from a distribution of detected 2D key-
points (obtained by [25]) to a distribution of 3D keypoints
which are valid 3D human poses according to the discrim-
inator network. From the generative adversarial network
point of view this can be seen as the generator network. To
force the generator network to generate matching 3D poses
to the 2D observations we propose to add a third neural net-
work that predicts camera parameters from the input data.
The inferred camera parameters are used to reproject the
estimated 3D pose back to 2D which gives this framework
its name: Reprojection Network (RepNet). Fig. 2 shows
an overview of the proposed network. Additionally, to fur-
ther enforce kinematic constraints we propose to employ an
easy to calculate and implement descriptor for joint lengths
and angles inspired by the kinematic chain space (KCS) of
Wandt et al. [41].
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In contrast to other works our proposed method is very
robust against overfitting to a specific dataset. This claim is
reinforced by our experiments where the network can even
infer human poses and camera positions that are not in the
training set. Even if there are strong deformations or un-
usual camera poses our network achieves good results as
can be seen in the rock climbing image in Fig. 1. This leads
to our conclusion that the discriminator network does not
memorize all poses from the training set but learns a mean-
ingful manifold of feasible human poses. As we will show
the inclusion of the KCS as a layer in the discriminator net-
work plays an important role for the quality of the discrim-
inator.

We evaluate our method on the three datasets Hu-
man3.6M [13], MPI-INF-3DHP [21], and Leeds Sports
Pose (LSP) [16]. On all the datasets our method achieves
state-of-the-art results and even outperforms most super-
vised approaches. Furthermore, the proposed network can
predict a human pose in less than 0.1 milliseconds on stan-
dard hardware which allows to build a real-time pose esti-
mation system when combining it with state-of-the-art 2D
joint detectors, such as OpenPose [5].

The code will be made available.
Summarizing, our contributions are:

• An adversarial training method for a 3D human pose
estimation neural network (RepNet) based on a 2D re-
projection.

• Weakly supervised training without 2D-3D correspon-
dences and unknown cameras.

• Simultaneous 3D skeletal keypoints and camera pose
estimation.

• A layer encoding a kinematic chain representation that
includes bone lengths and joint angle informations.

• A pose regression network that generalizes well to un-
known human poses and cameras.

2. Related Work
The most relevant approaches related to our work can be

roughly divided into two categories. The first group consists
of optimization-based approaches where a 3D human body
model is deformed such that it satisfies a reprojection error.
The second group contains the most recent approaches that
try to estimate 3D poses directly from images or detected
keypoints.

2.1. Reprojection Error Optimization

Early works on human pose estimation from single im-
ages date back to Lee and Chen [18] in 1985. They use

known bone lengths and a binary decision tree to recon-
struct a human pose. Some authors [15, 11, 6] propose
to search for 3D poses in large pose databases that ex-
plain the 2D observations the best. To compress the knowl-
edge from these databases a widely used method is to learn
an overcomplete dictionary of 3D human poses either us-
ing principal component analysis (PCA) or another dictio-
nary learning method. Commonly the best linear combi-
nation of bases obtained by a principal component analysis
is optimized [7, 43, 49, 50]. To constrain the optimization
several priors are proposed, such as joint angle limits [1],
physical plausibility [46], or anthropometric regularization
[30, 33, 42]. Other works enforce temporal coherence in
video sequences [40, 2, 41, 46] or use additional sensors
[37, 39, 38].

2.2. Direct Inference using Neural Networks

Recently, many researchers focus on directly regressing
the 3D pose from image data or from 2D detections using
deep neural networks. Several works try to build an end-
to-end system which extracts the 3D pose from the image
data [27, 8, 21, 23, 28, 32, 19, 17, 26, 29, 36, 45]. Moreno-
Noguer [24] learns a mapping from 2D to 3D distance ma-
trices. Martinez et al. [20] train a deep neural network on
2D joint detections to directly infer the 3D human pose.
They trained their network to achieve an impressive perfor-
mance on the benchmark dataset Human3.6M [13]. How-
ever, the network has significantly more parameters than
poses in the training set of Human3.6M which could in-
dicate a simple memorization of the training set. Although
our proposed pose estimation network has a similar num-
ber of parameters our experiments indicate that overfitting
is avoided by our adversarial training approach. Hossain et
al. [31] extended the approach of [20] by using a recurrent
neural network for sequences of human poses. The special
case of weak supervision is rarely considered, Kanazawa et
al. [17] propose a method that can also be trained with-
out 2D to 3D supervision. In contrast to our approach they
use the complete image information to train an end-to-end
model to reconstruct a volumetric mesh of a human body.
Yang et al. [45] train a multi-source discriminator network
to build an end-to-end model.

3. Method
The basic idea behind the proposed method is that 3D

poses are regressed from 2D observations by learning a
mapping from the input distribution (2D poses) to the out-
put distribution (3D poses).

In standard generative adversarial network (GAN) train-
ing [9] a generator network learns a mapping from an input
distribution to the an output distribution which is rated by
another neural network, called discriminator network. The
discriminator is trained to distinguish between real samples



Figure 2. The proposed adversarial training structure for RepNet consist of three parts: a pose and camera estimation network (1), a critic
network (2), and a reprojection network (3). There are losses (green) for the critic, the camera, and the reprojection.

from a database and samples created from the generator net-
work. When training the generator to create samples that the
discriminator predicts as real samples the discriminator pa-
rameters are fixed. The generator and the discriminator are
trained alternatingly and therefore compete with each other
until they both converge to a minimum.

In standard GAN training the input is sampled from a
gaussian or uniform distribution. Here, we assume that the
input is sampled from a distribution of 2D observations of
human poses. Adopting the Wasserstein GAN naming [3]
we call the discriminator critic in the following. Without
knowledge about camera projections the network produces
random, yet feasible human 3D poses. However, these 3D
poses are very likely the incorrect 3D reconstructions of
the input 2D observations. To obtain matching 2D and 3D
poses we propose a camera estimation network followed
by a reprojection layer. As shown in Fig. 2 the proposed
network consists of three parts: The pose and camera esti-
mation network (1), the critic used in the adversarial train-
ing (2), and the reprojection part (3). The critic and the
complete adversarial model are trained alternatingly as de-
scribed above.

3.1. Pose and Camera Estimation

The pose and camera estimation network splits into two
branches, one for regression of the pose and the other for
the camera estimation. In the following X ∈ R3×n de-
notes a 3D human pose where each column contains the
xyz-coordinates of a body joint. In the neural network this
matrix is written as a 3n dimensional vector. Correspond-
ingly, if n joints are reconstructed the input of the pose and
camera estimation network is a 2n dimensional vector con-
taining the coordinates of the detected joints in the image.

The pose estimation part consists of two consecutive

residual blocks, where each block has two hidden layers of
1000 densely connected neurons. For the activation func-
tions we use leaky ReLUs [12] which produced the best
results in our experiments. The last layer outputs a 3n di-
mensional vector which contains the 3D pose and can be
reshaped to X . The camera estimation branch has a simi-
lar structure as the pose estimation branch with the output
being a 6 dimensional vector containing the camera param-
eters. Here, we use a weak perspective camera model that
can be defined by only six variables. To obtain the camera
matrix the output vector is reshaped to K ∈ R2×3.

3.2. Reprojection Layer

The reprojecting layer takes the output pose X of the 3D
generator network and the camera K of the camera estima-
tion network. The reprojecting into 2D coordinate space
can then be performed by

W ′ = KX, (1)

where W ′ is called the 2D reprojection in the following.
This allows for the definition of a reprojection loss function

Lrep(X,K) = ‖W −KX‖F , (2)

where W is the input 2D pose observation matrix which
has the same structure as W ′. ‖ · ‖F denotes the Frobe-
nius norm. Note that the reprojection layer is a single layer
which only performs the reprojection and does not have any
trainable parameters. To deal with occlusions columns in
W and X that correspond to not detected joints can be set
to zero. This means they will have no influence on the value
of the loss function. The missing joints will then be halluci-
nated by the pose generator network according to the critic
network. In fact, the stacked hourglass network that pro-
duces the 2D joint detections [25] that we use as the input



Figure 3. Network structure of the critic network. In the upper path
the 3D pose is transformed into the KCS matrix and fed into a fully
connected (FC) network. The lower path is build from multiple FC
layers. The feature vectors of both paths are concatenated and fed
into another FC layer which outputs the critic value.

does not predict the spine joint. We therefore set the cor-
responding columns in W and X to zero in all our experi-
ments.

3.3. Critic Network

The complete network in Fig. 2 is trained alternatingly
with the critic network. The loss on the last layer of the
critic is a Wasserstein loss function [3]. The obvious choice
of a critic network is a fully connected network with a
structure similar to the pose regression network. However,
such networks struggle to detect properties of human poses
such as kinematic chains, symmetry and joint angle lim-
its. Therefore, we follow the idea of Wandt et al. [41] and
add their kinematic chain space (KCS) into our model. We
develop a KCS layer with a successive fully connected net-
work which is added in parallel to the fully connected path.
These two paths in the critic network are merged before the
output layer. Fig. 3 shows the network structure of the critic.

The KCS matrix is a representation of a human pose con-
taining joint angles and bone lenghts and can be computed
by only two matrix multiplications. A bone bk is defined as
the vector between the r-th and t-th joint

bk = pr − pt = Xc, (3)

where

c = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)T , (4)

with 1 at position r and −1 at position t. Note that the
length of the vector bk has the same direction and length as
the corresponding bone. By concatenating b bones a matrix
B ∈ R3×b can be defined as

B = (b1, b2, . . . , bb). (5)

This leads to a matrix C ∈ Rj×b The matrix B is calculated
by concatenating the corresponding vectors c. It follows

B = XC. (6)

Multiplying B with its transpose we compute the so called

KCS matrix

Ψ = BTB =


l21 · · ·
· l22 · ·

· ·
. . . ·

· · · l2b

 . (7)

Because each entry in Ψ is an inner product of two bone
vectors the KCS matrix has the bone lengths on its diago-
nal and a (scaled) angular representation on the other en-
tries. In contrast to an euclidean distance matrix [24] the
KCS matrix Ψ is easily calculated by two matrix multi-
plications. This allows for an efficient implementation as
an additional layer. By giving the discriminator network
an additional feature matrix it does not need to learn joint
lengths computation and angular constraints on its own. In
fact, in our experiments it was not possible to achieve an
acceptable symmetry between the left and right side of the
body without the KCS matrix. Section 4.1 shows how the
3D reconstruction benefits from adding the additional KCS
layer. In our experiments there was no difference between
adding convolutional layers or fully connected layers after
the KCS layer. In the following we will use two fully con-
nected layers, each containing 100 neurons, after the KCS
layer. Combined with the parallel fully connected network
this leads to the critic structure in Fig. 3.

3.4. Camera

Since the camera estimation sub-network in Fig. 2 can
produce any 6-dimensional vector we need to force the net-
work to produce matrices describing weak perspective cam-
eras. If the 3D poses and the 2D poses are centered at their
root joint the camera matrix K projects X to W ′ according
to Eq. 1. A weak perspective projection matrix K has the
property

KKT = s2I2, (8)

where s is the scale of the projection and I2 is the 2 × 2
indentity matrix. Since the scale s is unknown we derive a
computationally efficient method of calculating s. The scale
s equals to the largest singular value (or the `2-norm) of K.
Both singular values are equal. Since the trace of KKT is
the sum of the squared singular values

s =
√
trace(KKT )/2. (9)

The loss function can now be defined as

Lcam = ‖ 2

trace(KKT )
KKT − I2‖F , (10)

where ‖·‖F denotes the Frobenius norm. Note that only one
matrix multiplication is necessary to compute the quadratic
scale.



3.5. Data Preprocessing

The camera estimation network infers the parameters of
the weak perspective camera. That means the camera ma-
trix contains a rotational and a scaling component. To avoid
ambiguities between the camera and 3D pose rotation all
the rotational and scaling components from the 3D poses
are removed. This is done by aligning every 3D pose to a
template pose. We do this by calculating the ideal rotation
and scale for the corresponding shoulder and hip joints via
procrustes alignment. The resulting transformation is ap-
plied to all joints.

Depending on the persons size in the image the 2D joint
detections can have arbitrary scale. To remove the scale
component we divide each 2D pose vector by its standard
deviation. Note that using this scaling technique the same
person can have different sized 2D pose representations de-
pending on the camera and 3D pose. However, the value for
all possible 2D poses is constrained. The remaining scale
variations are compensated by the cameras scale compo-
nent. In contrast to e.g. [20] we do not need to know the
mean and standard deviation of the training set. This allows
for an easy transfer of our method to a different domain of
2D poses.

3.6. Training

We implemented the Improved Wasserstein GAN train-
ing procedure of [10]. In our experience this results in
better and faster convergence compared to the traditional
Wasserstein GAN [3] and standard GAN training [9] using
binary cross entropy or similar loss functions. We use an
initial learning rate of 0.001 with exponential decay every
10 epochs.

4. Experiments
We perform experiments on the three datasets Hu-

man3.6M [13], MPI-INF-3DHP [21], and LSP [16]. Hu-
man3.6M is the largest benchmark dataset containing im-
ages temporally aligned to 2D and 3D correspondences.
Unless otherwise noted we use the training set of Hu-
man3.6M for training our networks. To show quantitative
results on unseen data we evaluate our method on MPI-
INF-3DHP. For unusual poses and camera angles subjective
results are shown on LSP. Matching most comparable meth-
ods we use stacked hourglass networks [25] for 2D joint es-
timations from the input images in most of the experiments.

4.1. Quantitative Evaluation on Human3.6M

In the literature there are two main evaluation protocols
on the Human3.6M dataset using subjects 1, 5, 6, 7, 8 for
training and subject 9, 11 for testing. Both protocols cal-
culate the mean per joint positioning error (MPJPE), i.e.
the mean euclidean distance between the reconstructed and

the ground truth joint coordinates. Protocol-I computes the
MPJPE directly whereas protocol-II first employs a rigid
alignment between the poses. For a sequence the MPJPE’s
are summed and divided by the number of frames.

Table 1 shows the results of protocol-I without a rigid
alignment. The rotation of the pose relative to the cam-
era can be directly calculated from the camera matrix es-
timated by the camera regression network. Rotating the
reconstructed pose in the world frame of the dataset gives
the final 3D pose. Table 2 shows the results of protocol-
II using a rigid alignment before calculating the error. The
row RepNet-noKCS shows the errors without using the KCS
layer. It can be seen that the additional KCS layer in the dis-
criminator significantly improves the pose estimation. We
are aware of the fact that our method will not be able to out-
perform supervised methods trained to perform exception-
ally well on Human3.6M, such as [20] and [19]. Instead,
in this section we show that even if we ignore the 2D-3D
correspondences and train weakly supervised our network
achieves comparable results to supervised state-of-the-art
methods and is even better than most of them. Comparing to
weakly supervised approaches [44, 35] we outperform the
best by about 30% on protocol-II. For subjective evaluation
the 1500th frame for every motion can be seen in Fig. 4.
For comparability we show the same frame from every mo-
tion sequence from the same viewing angle. Even difficult
poses, for instance sitting cross-legged, are reconstructed
well.

In our opinion, although widely used on Human3.6M,
the euclidean distance is not the only metric that should be
considered to evaluate the performance of a human pose es-
timation system. Since there are some single frames that
cannot be reconstructed well and can be seen as outliers
we also calculate the median of the MPJPE over all frames.
Additionally, we calculate the percentage of correctly posi-
tioned keypoints (PCK3D) as defined by [21] in Table 3.

In the following section we will show that although we
do not improve on all supervised state-of-the-art methods
directly trained on Human3.6M our approach outperforms
every other known method on MPI-INF-3DHP without ad-
ditional training.

4.2. Quantitative Evaluation on MPI-INF-3DHP

Our main contribution is a neural network that infers
even unseen human poses while maintaining a meaningful
3D pose. We compare our method against several state-of-
the-art approaches. Table 4 shows the results for different
metrics. We clearly outperform every other method with-
out having trained our model on this specific dataset. Even
approaches trained on the training set of MPI-INF-3DHP
perform worse than ours. This shows the generalization
capability of our network. The row RepNet 3DHP is the
result when training on the training set of MPI-INF-3DHP.



Figure 4. One example reconstruction for every motion from the test set of Human3.6M. The left 3D skeleton is the ground truth (GT) and
the right shows our reconstruction (RepNet). Even difficult poses such as crossed legs or sitting on the floor are reconstructed well.

Table 1. Results for the reconstruction of the Human3.6M dataset compared to other state-of-the-art methods following Protocol-I (no ridig
alignment). All numbers are taken from the referenced papers. For comparison the row RepNet+2DGT shows the error when using the
ground truth 2D labels. The column WS denotes weakly supervised approaches. Note that there are no results available for other weakly
supervised works.

Protocol-I WS Direct. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait Walk WalkD WalkT Avg.
LinKDE [14] 132.7 183.6 132.3 164.4 162.1 205.9 150.6 171.3 151.6 243.0 162.1 170.7 177.1 96.6 127.9 162.1
Tekin et al . [34] 102.4 147.2 88.8 125.3 118.0 182.7 112.4 129.2 138.9 224.9 118.4 138.8 126.3 55.1 65.8 125.0
Zhou et al . [50] 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0
Du et al. [8] 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2 117.5 226.9 120.0 117.7 137.4 99.3 106.5 126.5
Park et al. [27] 100.3 116.2 90.0 116.5 115.3 149.5 117.6 106.9 137.2 190.8 105.8 125.1 131.9 62.6 96.2 117.3
Zhou et al. [48] 91.8 102.4 96.7 98.8 113.4 125.2 90.0 93.8 132.2 159.0 107.0 94.4 126.0 79.0 99.0 107.3
Luo et al. [19] 68.4 77.3 70.2 71.4 75.1 86.5 69.0 76.7 88.2 103.4 73.8 72.1 83.9 58.1 65.4 76.0
Pavlakos et al. [28] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Zhou et al. [47] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.2 66.1 63.2 51.4 55.3 64.9
Martinez et al. [20] 53.3 60.8 62.9 62.7 86.4 82.4 57.8 58.7 81.9 99.8 69.1 63.9 50.9 67.1 54.8 67.5

RepNet (Ours) X 77.5 85.2 82.7 93.8 93.9 101.0 82.9 102.6 100.5 125.8 88.0 84.8 72.6 78.8 79.0 89.9
RepNet+2DGT (Ours) X 50.0 53.5 44.7 51.6 49.0 58.7 48.8 51.3 51.1 66.0 46.6 50.6 42.5 38.8 60.4 50.9

There is only a minor improvement of the 3DPCK and AUC
and even a minor deterioration of the MPJPE compared to
the network trained on Human3.6M. This suggests that the
critic network converges to a similar distribution of feasible
human poses for both training sets.

4.3. Plausibility of the Reconstructions

The metrics used for evaluation in Sec. 4.1 and 4.2 com-
pare the estimated 3D pose to the ground truth. However, a

low error in this metrics is not necessarily an indication for a
plausible human pose since the reconstructed pose can still
violate joint angle limits or symmetries of the human body.
For this purpose we introduce a new metric based on bone
length symmetry. We calculate bone lengths of the lower
and upper arms and legs since there is the largest error per
joint. By summing the absolute differences of all matching
bones on the right and left side of the body we can calculate
a symmetry error. The mean symmetry error of the ground



Table 2. Results for the reconstruction of the Human3.6M dataset compared to other state-of-the-art methods following Protocol-II (rigid
alignment). All numbers are taken from the referenced papers, except rows marked with * that are taken from [35]. Although we do not
improve over supervised methods on this specific dataset our method clearly outperforms all other weakly supervised approaches (column
WS). The best results for the weakly supervised methods are marked in bold. The second best approach that is not ours is underlined. For
comparison the last row RepNet+2DGT shows the error when using the ground truth 2D labels.

Protocol-II WS Direct. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait Walk WalkD WalkT Avg.
Akther and Black [1] 199.2 177.6 161.8 197.8 176.2 186.5 195.4 167.3 160.7 173.7 177.8 181.9 198.6 176.2 192.7 181.1
Ramakrishna et al. [30] 37.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1 168.6 175.6 160.4 161.7 174.8 150.0 150.2 157.3
Zhou et al. [49] 99.7 95.8 87.9 116.8 108.3 107.3 93.5 95.3 109.1 137.5 106.0 102.2 110.4 106.5 115.2 106.7
Bogo et al. [4] 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 79.7 86.8 87.7 82.3
Moreno-Noguer [24] 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 78.0 71.5 73.2 74.0
Martinez et al. [20] 44.8 52.0 44.4 50.5 61.7 59.4 45.1 41.9 66.3 77.6 54.0 58.8 35.9 49.0 40.7 52.1
Luo et al. [19] 40.8 44.6 42.1 45.1 48.3 54.6 41.2 42.9 55.5 69.9 46.7 42.5 36.0 48.0 41.4 46.6
3Dinterpreter* [44] X 78.6 90.8 92.5 89.4 108.9 112.4 77.1 106.7 127.4 139.0 103.4 91.4 79.1 - - 98.4
AIGN [35] X 77.6 91.4 89.9 88.0 107.3 110.1 75.9 107.5 124.2 137.8 102.2 90.3 78.6 - - 97.2
RepNet (Ours) X 53.0 58.3 59.6 66.5 72.8 71.0 56.7 69.6 78.3 95.2 66.6 58.5 63.2 57.5 49.9 65.1
RepNet-noKCS (Ours) X 63.1 67.4 71.5 78.5 85.9 82.6 70.8 82.7 92.2 116.6 77.6 72.2 65.3 73.2 69.6 77.9
RepNet+2DGT (Ours) X 33.6 38.8 32.6 37.5 36.0 44.1 37.8 34.9 39.2 52.0 37.5 39.8 34.1 40.3 34.9 38.2

Table 3. Performance of our method regarding the median and
PCK3D errors for the Human3.6M dataset.

mean median PCK3D
RepNet 65.1 60.0 93.0
RepNet+2DGT 38.2 36.0 98.6

Table 4. Results for the MPI-INF-3DHP dataset. All numbers are
taken from the referenced papers, except the row marked with *
which is taken from [22]. Without training on this dataset the pro-
posed method outperforms every other method. The row RepNet
3DHP shows the result when using the training set of MPI-INF-
3DHP. The column WS denotes weakly supervised approaches. A
higher value is better for 3DPCK and AUC while a lower value
is better for MPJPE. The best results are marked in bold and the
second best approach is underlined.

Method WS 3DPCK AUC MPJPE
Mehta et al. [21] 76.5 40.8 117.6
VNect [23] 76.6 40.4 124.7
LCR-Net[32]* 59.6 27.6 158.4
Zhou et al. [47] 69.2 32.5 137.1
Multi Person [22] 75.2 37.8 122.2
OriNet [19] 81.8 45.2 89.4
Kanazawa [17] X 77.1 40.7 113.2
Yang et al. [45] X 69.0 32.0 -
RepNet H36M (Ours) X 81.8 54.8 92.5
RepNet 3DHP (Ours) X 82.5 58.5 97.8

Table 5. Symmetry error in mm of the reconstructed 3D poses on
the different datasets with and without the KCS. Adding the KCS
layer to the critic networks results in significantly more plausible
poses.

Method mean std max
H36M noKCS 31.9 9.3 61.3
H36M KCS 8.2 3.8 20.5
3DHP noKCS 32.9 21.9 143.9
3DHP KCS 11.2 8.0 54.7

truth poses from the test set of Human3.6M and MPI-INF-
3DHP for all subjects is 0.7mm ± 0.8mm (max. 2.6mm)
and 2.1mm ± 1.3mm (max. 7.6mm), respectively. This
leads us to the conclusion that an equality between the left
and right side and therefore a low symmetry error is one rea-
sonable metric for the plausibility of a human pose. Table 5

compares several implementations of our network in terms
of the symmetry error. It can be clearly seen that the KCS
layer has a significant impact on this metric. The higher val-
ues for the MPI-INF-3DHP dataset can be explained by the
larger differences in symmetry of the ground truth data.

4.4. Noisy observations

Since the performance of our network appears to depend
a lot on the detections of the 2D pose detector we evalu-
ate our network on different levels of noise. Following [24]
we add gaussian noise N (0, σ) to the ground truth 2D joint
positions, where σ is the standard deviation in pixel. The
results for Human3.6M under protocol-II are shown in Ta-
ble 6. The error scales linearly with the standard deviation.
This indicates that the noise of the 2D joint detector has
a major impact on the results. Considering Tables 1 and
2 an improved detector will enhance the results to a level
where they outperform current state-of-the-art supervised
approaches.

Please note that the maximum person size from head to
toe is approximately 200px in the input data. Therefore,
gaussian noise with a standard deviation of σ = 20px can
be considered as extremely large. However, due to the critic
network using the KCS layer the output of the pose estima-
tion network is still a plausible human pose. To demonstrate
this we additionally investigated the average, standard devi-
ation and maximal symmetry error for the different noise
levels which is also shown in Table 6. As expected the er-
ror increases only slightly since the critic network enforces
plausible human poses. Even for noise levels as high as
N (0, 20) we achieve an average symmetry error of only
22.7mm± 4.5mm which can be considered as very low.

4.5. Qualitative Evaluation

For a subjective evaluation we use the Leeds Sports Pose
dataset (LSP) [16]. This dataset contains 2000 images of
different people doing sports. There is a large variety in
poses including stretched poses close to the limits of pos-



Table 6. Evaluation results for protocol-II (rigid aligment) with different levels of gaussian noise N (0, σ) (σ is the standard deviation)
added to the ground truth 2D positions (GT). The 2D detector noise has large impact on the 3D reconstruction. The right three columns
show the mean, standard deviation, and maximal symmetry error in millimeter.

symmetry
Protocol-II Direct. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait Walk WalkD WalkT Avg. mean std max
GT 33.6 38.8 32.6 37.5 36.0 44.1 37.8 34.9 39.2 52.0 37.5 39.8 34.1 40.3 34.9 38.2 6.2 3.7 20.8
GT + N (0, 5) 54.0 56.8 52.7 56.5 54.4 59.7 55.7 54.1 56.3 68.5 56.1 58.7 57.6 56.7 55.3 56.9 9.6 4.0 25.0
GT + N (0, 10) 70.4 72.2 72.8 75.1 70.2 84.1 68.4 89.3 74.0 94.1 68.3 74.3 67.7 73.5 70.0 74.9 13.0 3.8 24.2
GT + N (0, 15) 86.3 88.0 87.5 89.9 84.0 98.1 84.0 104.2 87.4 107.7 82.3 89.3 85.1 89.0 86.0 89.9 17.6 4.2 32.1
GT + N (0, 20) 101.6 103.0 101.6 104.5 97.5 112.2 99.3 118.1 100.9 121.5 95.9 104.0 101.6 104.7 102.3 104.6 22.7 4.5 37.5

Figure 5. Example 3D pose estimations from the LSP dataset. Good reconstructions are in the left columns. The right column shows some
failure cases with very unusual poses or camera angles. Although not perfect the poses are still plausible and close to the correct poses.

sible joint angles. Some of these poses and camera angles
were never seen before by our network. Nevertheless, it is
able to predict plausible 3D poses for most of the images.
Fig. 5 shows some of the reconstructions achieved by our
method. There are many subjectively well reconstructed
poses, even if these are extremely stretched and captured
from uncommon camera angles. Note that our network was
only trained on the camera angles of Human3.6M. This un-
derlines that an understanding of plausible poses and 2D
projections is learned. The right column in Fig. 5 shows
some failure cases and emphasizes a limitation of this ap-
proach: poses or camera angles that are too different from
the training data cannot be reconstructed well. However, the
reconstructions are still plausible human poses and in most
cases at least near to the correct pose.

4.6. Computational Time

We see our method as a building block in a larger image-
to-3D points system. Current state-of-the-art 2D keypoint
detectors such as [5] achieve real-time performance (ap-
proximately 100ms per frame) on standard hardware. Our
network adds another 0.05ms per frame and therefore has
nearly no impact on the runtime. Assuming the 2D keypoint
detection takes no time we achieve a frame rate of 20000fps

on an Nvidia TITAN X.

5. Conclusion

This paper presented RepNet: a weakly supervised train-
ing method for a 3D human pose estimation neural network
that infers 3D poses from 2D joint detections in single im-
ages. We proposed to use an additional camera estimation
network and our novel reprojection layer that projects the
estimated 3D pose back to 2D. By exploiting state-of-the-
art techniques in neural network research, such as improved
Wasserstein GANs [10] and kinematic chain spaces [41],
we were able to develop a weakly supervised training proce-
dure that does not need 2D to 3D correspondences. This not
only outperforms previous weakly supervised methods but
also avoids overfitting of the network to a limited amount of
training data. We achieved state-of-the-art performance on
the benchmark dataset Human3.6M, even compared to most
supervised approaches. Using the network trained on Hu-
man3.6M to predict 3D poses from the unseen data of the
MPI-INF-3DHP dataset showed an improvement over all
other methods. We also performed a subjective evaluation
on the LSP dataset where we achieved good reconstructions
even on images with uncommon poses and perspectives.
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