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ABSTRACT

The detection of vehicles in aerial images is widely applied in
many domains. In this paper, we propose a novel double focal
loss convolutional neural network framework (DFL-CNN). In
the proposed framework, the skip connection is used in the
CNN structure to enhance the feature learning. Also, the fo-
cal loss function is used to substitute for conventional cross
entropy loss function in both of the region proposed network
and the final classifier. We further introduce the first large-
scale vehicle detection dataset ITCVD with ground truth an-
notations for all the vehicles in the scene. The experimental
results show that our DFL-CNN outperforms the baselines on
vehicle detection.

Index Terms— Vehicle detection, convolutional neural
network, focal loss, ITCVD dataset

1. INTRODUCTION

The detection of vehicles in aerial images is widely applied in
many domains, e.g.traffic monitoring, vehicle tracking for se-
curity purpose, parking lot analysis and planning, etc. There-
fore, this topic has caught increasing attention in both aca-
demic and industrial fields [1, 2, 3]. However, compared with
object detection in ground view images, vehicle detection in
aerial images has a lot of different challenges, such as much
smaller scale, complex backgrounds and the monotonic ap-
pearance. See Figure 1 for an illustration.

Before the emergence of deep learning, hand-crafted
features combined with a classifier are the mostly adopted
ideas to detect vehicles in aerial images [4, 1, 2]. However,
the hand-crafted features lack generalization ability, and the
adopted classifiers need to be modified to adapt the of the
features. Some previous works also attempted to use shal-
low neural network [5] to learn the features specifically for
vehicle detection in aerial images [6, 7]. However, the rep-
resentational power of the extracted features are insufficient
and the performance meets the bottleneck. Furthermore, all of
these methods localize vehicle candidates by sliding window
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search. It’s low efficient and leads to costly and redundant
computation. The window’s sizes and sliding steps must be
carefully chosen to adapt the varieties of objects of interest in
dataset.

Fig. 1. Vehicles detection results on the proposed dataset.

In recent years, deep convolutional neural network (DCNN)
has achieved great successes in different tasks, especially for
object detection and classification [8, 9]. In particular, the se-
ries of methods based on region convolutional neural network
(R-CNN) [10, 11, 12] push forward the progress of object de-
tection significantly. Especially, Faster-RCNN [12] proposes
the region proposal network (RPN) to localize possible ob-
ject instead of traditional sliding window search methods and
achieves the state-of-the-art performance in different datasets
in terms of accuracy. However, these existing state-of-the-
art detectors cannot be directly applied to detect vehicles in
aerial images, due to the different characteristics of ground
view images and aerial view images [13]. The appearance of
the vehicles are monotone, as shown in Figure 1. It’s diffi-
cult to learn and extract representative features to distinguish
them from other objects. Particularly, in the dense park lot, it
is hard to separate individual vehicles. Moreover, the back-
ground in the aerial images are much more complex than the
nature scene images. For examples, the windows on the fa-
cades or the special structures on the roof, these background
objects confuse the detectors and classifiers.Furthermore,
compared to the vehicle sizes in ground view images, the
vehicles in the aerial images are much smaller (ca. 50 × 50
pixels) while the images have very high resolution (normally
larger than 5000 × 2000 pixels). Lastly, large-scale and well
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annotated dataset is required to train a well performed DCNN
methods. However, there is no public large-scale dataset,
such as ImageNet [14], for vehicle detection in aerial im-
ages. The two exceptions are VEDAI dataset [15] and DLR
3K dataset [2]. However, the objects in the VEDAI dataset
are relative easy to detect because of the small number of
vehicles which sparsely distribute in the images, and the
background is simple. The more challenging and realistic
DLR 3K dataset contains totally 20 aerial images with reso-
lution of 5616×3744. 10 images (3505 vehicles) are used for
training. Such number of training samples seems too small
for training a CNN model.

To address these problems, we propose a specific frame-
work for vehicle detection in aerial images, as shown in Fig-
ure 2. The novel framework is called double focal loss convo-
lutional neural network (DFL-CNN), which consists of three
main parts: 1) A skip-connection from the low layer to the
high layer is added to learn features which contains rich detail
information. 2) Focal loss function [16] is adopted in the RPN
instead of traditional cross entropy. This modification aims at
the class imbalance problem when RPN determine whether
a proposal is likely an object of interest. 3) Focal loss func-
tion replaces the cross entropy in the classifier. It’s used to
handle the problem of easy positive examples and hard neg-
ative examples during training. Furthermore, we introduce a
novel large-scale and well annotated dataset for quantitative
vehicle detection evaluation - ITCVD. Towards this goal, we
collected 173 images with 29088 vehicles, where each vehicle
in the ITCVD dataset is manually annotated using a bound-
ing box. The performance of the proposed method is demon-
strated with respect to the state-of-the-art baseline. We make
our code and dataset online available.

2. PROPOSED FRAMEWORK

An overview of the proposed framework is illustrated in Fig-
ure 2. It’s modified based on the standard Faster R-CNN [12].
We refer readers to [12] for the general procedure of object
detection. In this work, we choose ResNet [17] as the back-
bone structure for feature learning, because of its high effi-
ciency, robustness and effectiveness during training [18].
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Fig. 2. The overview of the proposed framework DFL-CNN.
It consists of three main parts: 1) A skip-connection from the
low layer to the high layer is added to learn features which
contains rich detail information. 2) Focal loss function [16]
is adopted in the RPN instead of traditional cross entropy. 3)
Focal loss function replaces the cross entropy in the classifier.

2.1. Skip Connection

It has been proven in the task of semantic segmentation that,
features from the shallower layers retain more detail informa-
tion [19]. In the task of object detection, the sizes of vehicles
in aerial images are ca. 30× 50 pixels, assuming 10cm GSD.
The size of the output feature maps of the ResNet from the
5th pooling layers is only one 32nd of the input size [17].
The shorter edges of most vehicles are very small when they
are projected on the feature maps after the 5th pooling layer.
So, they will be ignored because their sizes are rounded up.
Furthermore, pooling operation leads to significant loss of de-
tailed information. For densely parked area, it is difficult to
separate individual vehicles. For example, the extracted fea-
tures from the shallow layer have richer detailed information
than the features from the deeper layer. In the case of densely
parked area, the detail information play an important to sep-
arate the individual vehicles from each other. Therefore, we
fuse the features from the shallow layers, which contain more
detail information, with the features learned by deeper layers,
which have more representative abilities, to precisely localize
detected individual vehicle. This skip-connected CNN archi-
tecture is illustrated in Figure 3. The image fed to the network
is 752×674 pixels. The size of the feature maps from the 4th
and 5th pooling layers are 42×47×1024 and 21×24×2048
respectively. To fuse them together, the smaller feature maps
are upsampled to the size of 42 × 47 × 2048, and then re-
duced the feature channels into 1024 by a 1 × 1 convolution
layer. Then the two feature maps are concatenated as the skip-
connected feature maps.

Image Size
752 x 674 x 3

conv1 

376x337x64 

188x169x256

conv2 

94x84x512
conv3 

47x42x1024
conv4 

24x21x2048
conv5 

Concatenate

Skip-connected 
feature map

Max pooling

ConvolutionUpsampling 

47x42x2048 47x42x1024

Fig. 3. Structure of skip-connected CNN. The feature maps
from the conv5 are upsampled to the same size as the feature
maps from conv4. Then, the number of the feature channels
are reduced by 1× 1 convolution layer into 1024. Finally, the
feature maps from conv4 and conv5 are concatenated.

2.2. Focal loss function

Focal loss function is originally proposed by [16] to dedi-
cate the class imbalance problems for the one-stage object
detectors, such as YOLO [20] and SSD [21]. As discussed
in the paper, a one-stage detector suffers from the extreme
foreground-background class imbalance because of the dense
candidates which cover spatial positions, scales, and aspect
ratios. A two-stage detector handles this challenge in the first
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stage: candidates proposal, e.g.RPN [12], most of the candi-
dates which are likely to be the background are canceled, and
then the second stage: classifier works on much sparser can-
didates. However, in the scenes with dense objects of interest,
e.g., the parking cars in Figure 1, even the state-of-the-art can-
didates proposal method RPN is not good enough to filter the
dense proposals in two aspects: 1) many of the dense propos-
als cover two vehicles and have high overlap with the ground
truth, which makes it hard for the proposal methods to de-
termine whether they are background objects. 2) Too many
background objects interfere the training. It is hard to select
the negative samples which are very similar as the vehicles
to enhance the detector/classifier to distinguish them from the
positive samples. Inspired by the idea in [16], we proposed
to use the focal loss function instead of the conventional CE
loss both in the region proposal and the classification stages,
dubbed as double focal loss-CNN (DFL-CNN).

The Focal loss is derived from the CE loss by adding a
modulating factor (1− pt)γ with tunable focusing parameter
γ ≥ 0:

LFL(pt) = −(1− pt)γ log(pt) (1)

The focal loss has two main properties: 1) The loss is unaf-
fected by misclassified examples which have small pt when
the modulating factor is near 1. In contrast, when pt → 1, the
modulating factor is near 0 , which down-weights the loss for
well-classified examples. 2)When the focusing parameter γ
is increased, the effect of modulating factor is also increased.
CE is the special case of γ = 0. Intuitively, the contribution
of the easy examples are reduced while the ones from hard ex-
amples are enhanced during the training. For example, with
γ = 2 1, the focal loss of an example classified with pt = 0.9
is 1% of the CE loss and 0.1% of it when pt = 0.968. If an ex-
ample is misclassified (pt < 0.5), its importance for training
is increased by scaling down its loss 4 times.

2.3. Double Focal Loss CNN

In our DFL-CNN framework, we add a skip connection to
fuse the features from the lower (conv4) and higher (conv5)
layers, and adopt focal loss function both in the RPN layer and
the final classification layer to overcome the class imbalance
and the easy/hard examples challenges in our task.

As discussed in Section 2.1, the final feature maps are
1/16 of the original images. Therefore, each pixel in the
feature maps corresponds an region of 16 × 16 pixels. To
generate candidates proposal, centered on each pixel in the
feature maps, 9 anchors in 3 different areas (302, 502, 702)
and 3 different ratios (1:1, 2:1 and 1:2) are generated on the
original input image. Every anchor is labeled as either posi-
tive or negative sample based on the Intersection-over-Union
(IoU) with ground truth. The IoU is formally defined as:
IoU = area(Proposal∩Ground Truth)

area(Proposal∪Ground Truth) , where the numerator is the

1γ is set to 2 in our experiments.

overlapping area of box of candidate and the ground truth
box, and the denominator represents the union of them. The
proposals which have the IoU more than 0.7, are labeled as
positive samples and the ones whose IoU are smaller than
0.1 are labeled as the negative samples. Other proposals are
discarded. All the proposals exceeding the boundary of the
image are also discarded. During training, each mini-batch
consists of 64 positive samples and 64 negative samples.

The loss function for training the RPN using focal loss is
defined as:

LRPN ({pi}, {ti}) =
1

Ncls

∑
i

Lcls−FL(pi, p
∗
i )

+λ
1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ) (2)

where Lcls−FL is the focal loss for classification, as defined
in Eq. (1) and Lreg is the loss for bounding box regression.
pi is the predicted probability of proposal i belonging to the
foreground and p∗i is its ground truth label. Ncls denotes the
total number of samples and Nreg is the total number of pos-
itive samples. λ is used to weight the loss for bounding box
regression 2. The smooth L1 loss function is adopted for Lreg
as in [12]. t = (tx, ty, tw, th) is the normalized informa-
tion of the bounding boxes of the positive sample and t∗ is its
ground truth.

The RPN layer output a set of candidates which are likely
to be the objects of interest, i.e.vehicles in this work, and
there predicted bounding boxes. Then, the features covered
by these bounding boxes are cropped out from the feature
maps and go through the region of interest (ROI) pooling
layer to get a fix the size of features.

Finally, the final classifier subnet are fed with these fea-
tures and classify their labels, and predict their bounding
boxes further. The loss function of the classifier subnet for
each candidate is formally defined as:

Lclassifier(P, T ) = Lcls−FL(P, P
∗) + λ2P

∗Lreg(T, T
∗)
(3)

where T is defined as:

Tx = (Px −Ax)/Aw, Ty = (Py −Ay)/Ah,
Tw = log(Pw/Aw), Th = log(Ph/Ah),

T ∗x = (P ∗x −Ax)/Aw, T ∗y = (P ∗y −Ay)/Ah, (4)

T ∗w = log(P ∗w/Aw), T ∗h = log(P ∗h/Ah),

The Px, Ax and P ∗x denote the bounding boxes of prediction
results, anchors and ground truth. The other subscripts of y,w
and h are the same as x. We set λ2 = 1 to equal the influence
of classification and bounding box prediction. During train-
ing, the classifier subnet is trained using positive and negative
samples in ratio of 1 : 3, same as the conventional training
strategy [12].

2λ is set to 15 in our experiments.Because the size of final feature maps
is 47× 42 and totally 128 anchors are chosen, therefore the ratio is ca. 15.
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3. ITCVD DATASET

In this section, we introduce the new large-scale, well anno-
tated and challenging ITCVD dataset. The images were taken
from an airplane platform which flied over Enschede, The
Netherlands, in the height of ca 330m above the ground 3. The
images are taken in both nadir view and oblique view The tilt
angle of oblique view is 45 degrees. The Ground Sampling
Distance (GSD) of the nadir images is 10cm.

The raw dataset contains 228 aerial images with high res-
olution of 5616 × 3744 pixels in JPG format. Because the
images are taken consecutively with a small time interval,
there is ca. 60% overlap between consecutive images. It is
important to make sure that, the images used for training do
not have common regions with the images that are used for
testing. After careful manual selection and verification, 173
images are remained among which 135 images with 23543
vehicles are used for training and the remaining 38 images
with 5545 vehicles for testing. Each vehicle in the dataset is
manually annotated using a bounding box which is denoted
as (x, y, w, h), where (x, y) is the coordinate of the left-up
corner of the box, and (w, h) is the width and height of the
box respectively.

4. EXPERIMENTS

4.1. Dataset and experimental settings

We evaluate our method in our ITCVD dataset 4. To save
the GPU memory, each original image in the datasets are
cropped into small patches uniformly. The resulting new im-
age patches are in the size of 674×752 pixels. The coordinate
information of annotation is also updated in the new cropped
patches. The deep learning models are implemented in Keras
with TensorFlow backend. The ResNet-50 network [17] is
used as the backbone CNN structure for feature learning for
Faster R-CNN [12] and our model. We use a learning rate of
0.00001 to train the RPN. The CNN structure are pre-trained
on ImageNet dataset [14].

To evaluate the experimental results, the metrics of re-
call/precision rate and F1-score are used, which are formally
defined as: Recall Rate (RR) = TP

TP+FN , Precision Rate (PR) =
TP

TP+FP , F1-score = 2×RR×PR
RR+PR , where TP , FN , FP denote the

true positive, false negative and false positive respectively.
Furthermore, the relationships between the IoU andRR, PR
are also evaluated respectively.

4.2. Results on ITCVD dataset

The state-of-the-art object detector Faster R-CNN [12] is
implemented to provide a strong baseline. In addition, tra-
ditional HOG + SVM method [22] is provided as a weak

3http://www.slagboomenpeeters.com/
4Further experiments on DLR 3K dataset [2] can be found in the technical

report https://arxiv.org/abs/1801.07339.

baseline. Figure 4 depicts the relationship between recall
rate and the precision rate of DFL-CNN, Faster R-CNN and
HOG+SVM algorithms with different IoU in the ITCVD
dataset. It is obvious that the CNN based methods (DFL-
CNN in green curve and Faster R-CNN in red curve) are
significantly better than the traditional method (HOG+SVM
in black curve). In the relation between recall and precision,
our DFL-CNN method also perform better than Faster R-
CNN. According to these relationship curves, IoU = 0.3 is
a good balance point for the following experimental settings,
which reports high recall rate and precision at the same time.
Note that, it is also a conventional setting in the task of object
detection. The quantitative results of these three methods are
given in Table 1 (the results are given with IoU = 0.3). We
can see that, our method outperforms the others.
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Fig. 4. The relationship between IoU and recall rate (a), IoU
and precision rate (b) and recall and precision (c) of DFL-
CNN, Faster R-CNN, HOG+SVM in the ITCVD dataset.

HOG+SVM Faster R-CNN DFL-CNN
RR 21.19% 88.38% 89.44%
PR 6.52% 58.36% 64.61%

F1-score 0.0997 0.7030 0.7502

Table 1. Comparison of baselines and the DFL-CNN method
in ITCVD dataset.

5. CONCLUSION

In this paper, we have proposed a specific framework DFL-
CNN for vehicle detection in the aerial images. We fuse
the features properties learned in the lower layer of the net-
work (containing more spatial information) and the ones from
higher layer (more representative information) to enhance the
network’s ability of distinguishing individual vehicles in a
crowded scene. To address the challenges of class imbal-
ance and easy/hard examples, we adopt focal loss function in-
stead of the cross entropy in both of the region proposal stage
and the classification stage. We have further introduced the
first large-scale vehicle detection dataset ITCVD with ground
truth annotations for all the vehicles in the scene. Compared
to DLR 3K dataset, our benchmark provides much more ob-
ject instances as well as novel challenges to the community.
For future work, we will extend DFL-CNN to recognize the
vehicle types and detect the vehicle orientations.
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