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Abstract

The detection of vehicles in aerial images is widely applied in many applications.
Comparing with object detection in the ground view images, vehicle detection
in aerial images remains a challenging problem because of small vehicle size,
monotone appearance and the complex background. In this paper, we propose
a novel double focal loss convolutional neural network framework (DFL-CNN).
In the proposed framework, the skip connection is used in the CNN structure to
enhance the feature learning. Also, the focal loss function is used to substitute for
conventional cross entropy loss function in both of the region proposed network
and the final classifier. We further introduce the first large-scale vehicle detection
dataset ITCVD with ground truth annotations for all the vehicles in the scene.
We demonstrate the performance of our model on the existing benchmark DLR
3K dataset as well as the ITCVD dataset. The experimental results show that our
DFL-CNN outperforms the baselines on vehicle detection.

Keywords: object detection, aerial images, convolutional neural network (CNN),
focal loss function

1. Introduction

The detection of vehicles in aerial images is widely applied in many appli-
cations, e.g.traffic monitoring, vehicle tracking for security purpose, parking lot
analysis and planning, etc. Therefore, this topic has caught increasing attention in
both academic and industrial fields (Gleason et al., 2011; Liu and Mattyus, 2015;
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Chen et al., 2016). However, compared with object detection in ground view im-
ages, vehicle detection in aerial images has a lot of different challenges, such as
much smaller scale, complex backgrounds and the monotonic appearance. See
Figure 1 for an illustration.

Before the emergence of deep learning, hand-crafted features combined with
a classifier are the mostly adopted ideas to detect vehicles in aerial images (Zhao
and Nevatia, 2003; Gleason et al., 2011; Liu and Mattyus, 2015). However, the
hand-crafted features lack generalization ability, and the adopted classifiers need
to be modified to adapt the of the features. Some previous works also attempted
to use shallow neural network (LeCun et al., 1990) to learn the features specifi-
cally for vehicle detection in aerial images (Cheng et al., 2012; Chen et al., 2014).
However, the representational power of the extracted features are insufficient and
the performance meets the bottleneck. Furthermore, all of these methods local-
ize vehicle candidates by sliding window search. It’s low efficient and leads to
costly and redundant computation. The window’s sizes and sliding steps must be
carefully chosen to adapt the varieties of objects of interest in dataset.

Figure 1: Vehicles detection results on the proposed dataset.

In recent years, deep convolutional neural network (DCNN) has achieved great
successes in different tasks, especially for object detection and classification clas-
sification (Krizhevsky et al., 2012; LeCun et al., 2015). In particular, the series of
methods based on region convolutional neural network (R-CNN) (Girshick et al.,
2014; Girshick, 2015; Ren et al., 2015) push forward the progress of object de-
tection significantly. Especially, Faster-RCNN (Ren et al., 2015) proposes the
region proposal network (RPN) to localize possible object instead of traditional
sliding window search methods and achieves the state-of-the-art performance in
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different datasets in terms of accuracy. However, these existing state-of-the-art
detectors cannot be directly applied to detect vehicles in aerial images, due to the
different characteristics of ground view images and aerial view images (Xia et al.,
2017). The appearance of the vehicles are monotone, as shown in Figure 1. It’s
difficult to learn and extract representative features to distinguish them from other
objects. Particularly, in the dense park lot, it is hard to separate individual ve-
hicles. Moreover, the background in the aerial images are much more complex
than the nature scene images. For examples, the windows on the facades or the
special structures on the roof, these background objects confuse the detectors and
classifiers.Furthermore, compared to the vehicle sizes in ground view images, the
vehicles in the aerial images are much smaller (ca. 50×50 pixels) while the im-
ages have very high resolution (normally larger than 5000×2000 pixels). Lastly,
large-scale and well annotated dataset is required to train a well performed DCNN
methods. However, there is no public large-scale dataset such as ImageNet (Deng
et al., 2009) or ActivityNet (Caba Heilbron et al., 2015), for vehicle detection in
aerial images.

To address these problems, we propose a specific framework for vehicle detec-
tion in aerial images, as shown in Figure 2. The novel framework is called double
focal loss convolutional neural network (DFL-CNN), which consists of three main
parts: 1) A skip-connection from the low layer to the high layer is added to learn
features which contains rich detail information. 2) Focal loss function (Lin et al.,
2017) is adopted in the RPN instead of traditional cross entropy. This modifica-
tion aims at the class imbalance problem when RPN determine whether a proposal
is likely an object of interest. 3) Focal loss function replaces the cross entropy in
the classifier. It’s used to handle the problem of easy positive examples and hard
negative examples during training. Furthermore, we introduce a novel large-scale
and well annotated dataset for quantitative vehicle detection evaluation - ITCVD.
Towards this goal, we collected 173 images with 29088 vehicles, where each ve-
hicle in the ITCVD dataset is manually annotated using a bounding box. The
performance of the proposed method is demonstrated with respect to a represen-
tative set of state-of-the-art baselines, leveraging the proposed ITCVD dataset and
DLR 3K dataset (Liu and Mattyus, 2015). We make our code and dataset online
available.

2. Related Work

Object detection and classification have been the central topics in the com-
puter vision and photogrammetry literature. Most of the existing methods can be
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roughly divided into three main steps: candidate region proposal, feature extrac-
tion and classification.

To generate the regions which likely contains the object of interest, many
methods employ sliding-window search strategy (Felzenszwalb et al., 2010; Liu
and Mattyus, 2015; Chen et al., 2016). These methods used windows with varied
scales and ration to scan through the image with fixed step size. Sliding-window
search strategy has high computation and time complexity, and most of the win-
dows are redundant. Uijlings et al. (2013) proposed the algorithm dubbed Selec-
tive Search to generate possible object locations. This method combines the merits
of both an exhaustive search and segmentation. It’s widely adopted to combine
with DCNN methods for object detection, such as Girshick et al. (2014); Girshick
(2015). Ren et al. (2015) proposed the region proposal network (RPN) and then
became the most popular method for region proposal.

Before classification, features are extracted within each region candidate. Kem-
bhavi et al. (2011) used SIFT features for vehicle detection. Gleason et al. (2011);
Han et al. (2006) employed HoG features, while Bai et al. (2006) adopted Haar-
like features for this task. Even though their methods reported good results, such
hand-crafted features are insufficient to separate vehicles from the complex back-
ground. Recently, DCNN based methods have achieved great successes in object
detection and classification (Krizhevsky et al., 2012; Girshick et al., 2014; Tang
et al., 2017; Carlet and Abayowa, 2017) .

Finally, the extracted features are feed to a classifier. Support Vector Machine
(SVM) and Random Forest (RF) are two of the most popular classifiers (Zhao and
Nevatia, 2003; Gleason et al., 2011; Liu and Mattyus, 2015; Rey et al., 2017) be-
cause of their high efficiency and robustness. Until now, they are also employed as
the final classifier of some CNN based methods (Girshick et al., 2014). Recently,
softmax is the first choice for the classifier of DCNN based methods because it
provides normalized probabilistic prediction. Then the cross entropy (CE) is used
to calculate the loss for propagation to update the parameters of the network (Le-
Cun et al., 2015).

The methods which consist of these three steps are well known as two-stage
methods: candidate region proposal at the first stage and object classification at
the second stage. The CNN based two-stage methods achieve the state-of-the-art
performance in terms of accuracy. In contrast, the methods which do not need an
additional operation for region proposals, such as YOLO (Redmon et al., 2016)
and SSD (Liu et al., 2016), are one-stage-methods. They perform much faster than
two-stage methods with compromise of accuracy. Especially, their performance of
detecting objects in small scale is very poor. This demerit limits their application
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for vehicle detection in aerial images. Therefore, we utilize two-stage method in
our framework.

For training a well performing CNN based methods which has millions of
parameters, large dataset is the key factor. In the past, some well known large-
scale datasets for different tasks are published, e.g.ImageNet (Deng et al., 2009)
for object classification, Cityscapes dataset (Cordts et al., 2016) for semantic seg-
mentation, etc. All of them consists of tens of thousands images for training the
model. Even though many existing benchmark datasets contain varieties of vehi-
cles, they are collected in the ground view. These datasets are not applicable to
train a framework for vehicle detection in aerial images. There are also existing
some well annotated dataset for aerial images, such as the VEDAI dataset (Raza-
karivony and Jurie, 2016) and DLR 3K dataset (Liu and Mattyus, 2015). However,
the objects in the VEDAI dataset are relative easy to detect because of the small
number of vehicles which sparsely distribute in the images, and the background
is simple. The more challenging and realistic DLR 3K dataset contains totally
20 aerial images with resolution of 5616× 3744. 10 images (3505 vehicles) are
used for training. Such number of training samples seems too small for train-
ing a CNN model. In comparison with aforementioned datasets, our new dataset
ITCVD provides 135 images with 23543 vehicles for training the network.

3. Proposed Framework

An overview of the proposed framework is illustrated in Figure 2. It’s modified
based on the standard Faster R-CNN (Ren et al., 2015). We refer readers to Ren
et al. (2015) for the general procedure of object detection. In this work, we choose
ResNet (He et al., 2016) as the backbone structure for feature learning, because
of its high efficiency, robustness and effectiveness during training (Canziani et al.,
2016).

3.1. Skip Connection
It has been proven in the task of semantic segmentation that, features from the

shallower layers retain more detail information (Long et al., 2015). In the task
of object detection, the sizes of vehicles in aerial images are ca. 30× 50 pixels,
assuming 10cm GSD. The size of the output feature maps of the ResNet from the
5th pooling layers is only one 32nd of the input size (He et al., 2016). The shorter
edges of most vehicles are very small when they are projected on the feature maps
after the 5th pooling layer. So, they will be ignored because their sizes are rounded
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Figure 2: The overview of the proposed framework DFL-CNN. It consists of three main parts: 1)
A skip-connection from the low layer to the high layer is added to learn features which contains
rich detail information. 2) Focal loss function (Lin et al., 2017) is adopted in the RPN instead of
traditional cross entropy. 3) Focal loss function replaces the cross entropy in the classifier.

up. Furthermore, pooling operation leads to significant loss of detailed informa-
tion. For densely parked area, it is difficult to separate individual vehicles. For
example, as shown in Figure 3, the extracted features from the shallow layer (Fig-
ure 3b) have richer detailed information than the features from the deeper layer
(Figure 3c). In the case of densely parked area (Figure 3a), the detail information
play an important to separate the individual vehicles from each other. Therefore,

(a) Original image (b) shallow features (c) deep features

Figure 3: Comparison of the extracted features from the 4th pooling layer (b) and the 5th pooling
layer (c). They are illustrated in heat map. The yellow bounding box indicate the corresponding
region in the original image and the feature maps.

we fuse the features from the shallow layers, which contain more detail informa-
tion, with the features learned by deeper layers, which have more representative
abilities, to precisely localize detected individual vehicle. This skip-connected
CNN architecture is illustrated in Figure 4. The image fed to the network is
752 × 674 pixels. The size of the feature maps from the 4th and 5th pooling
layers are 42×47×1024 and 21×24×2048 respectively. To fuse them together,
the smaller feature maps are upsampled to the size of 42× 47× 2048, and then
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reduced the feature channels into 1024 by a 1×1 convolution layer. Then the two
feature maps are concatenated as the skip-connected feature maps.

Image Size

752 x 674 x 3

conv1 

376x337x64 

188x169x256

conv2 

94x84x512

conv3 

47x42x1024

conv4 

24x21x2048

conv5 

Concatenate

Skip-connected 

feature map

Max pooling

ConvolutionUpsampling 

47x42x2048 47x42x1024

Figure 4: Structure of skip-connected CNN. The feature maps from the conv5 are upsampled
to the same size as the feature maps from conv4. Then, the number of the feature channels are
reduced by 1×1 convolution layer into 1024. Finally, the feature maps from conv4 and conv5 are
concatenated.

3.2. Loss function
Cross entropy (CE) is the most popular loss function used for object classifi-

cation. It can reduce the imbalance between positive and negative samples. But
it is not good enough to train classifier for distinguishing easy and hard classified
examples. This problem becomes more significant in the task of vehicle detection
in the aerial images because of the monotone appearance of target objects and the
complex background. For example, windows on the facade may have very similar
appearance as the cars.

Focal loss function is original proposed by Lin et al. (2017) to dedicate the
class imbalance problems for the one-stage object detectors, such as YOLO (Red-
mon et al., 2016) and SSD (Liu et al., 2016). As discussed in the paper, a one-
stage detector suffers from the extreme foreground-background class imbalance
because of the dense candidates which cover spatial positions, scales, and aspect
ratios. A two-stage detector handles this challenge in the first stage: candidates
proposal, e.g.RPN (Ren et al., 2015), most of the candidates which are likely to be
the background are canceled, and then the second stage: classifier works on much
sparser candidates. However, in the scenes with dense objects of interest, e.g.,
the parking cars in Figure 1, even the state-of-the-art candidates proposal method
RPN is not good enough to filter the dense proposals in two aspects: 1) many of the
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dense proposals cover two vehicles and have high overlap with the ground truth,
which makes it hard for the proposal methods to determine whether they are back-
ground objects. 2) Too many background objects interfere the training. It is hard
to select the negative samples which are very similar as the vehicles to enhance
the detector/classifier to distinguish them from the positive samples. Inspired by
the idea in Lin et al. (2017), we proposed to use the focal loss function instead of
the conventional CE loss both in the region proposal and the classification stages,
dubbed as double focal loss-CNN (DFL-CNN). For better understanding, let’s
have a brief review on focal loss function.

The traditional CE loss for classification (for convenient discussion, we take
the binary classification as example) is formally defined as:

LCE(p,y) =− log(pt), (1)

with pt =

{
p if y = 1
1− p otherwise,

where p is the predicted probability of given can-

didate having label +1 and y is its ground truth label and y ∈ {−1,+1}.
When add a modulating factor (1− pt)

γ with tunable focusing parameter γ ≥ 0
to the CE loss, the loss function becomes the so call focal loss (FL):

LFL(pt) =−(1− pt)
γ log(pt) (2)

The focal loss has two main properties: 1) The loss is unaffected by misclassified
examples which have small pt when the modulating factor is near 1. In contrast,
when pt → 1, the modulating factor is near 0 , which down-weights the loss for
well-classified examples. 2)When the focusing parameter γ is increased, the effect
of modulating factor is also increased. CE is the special case of γ = 0. Intuitively,
the contribution of the easy examples are reduced while the ones from hard exam-
ples are enhanced during the training. For example, with γ = 2 1, the focal loss
of an example classified with pt = 0.9 is 1% of the CE loss and 0.1% of it when
pt = 0.968. If an example is misclassified (pt < 0.5), its importance for training
is increased by scaling down its loss 4 times.

3.3. Double Focal Loss CNN
In our DFL-CNN framework, we add a skip connection to fuse the features

from the lower (conv4) and higher (conv5) layers, and adopt focal loss function

1γ is set to 2 in our experiments.
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both in the RPN layer and the final classification layer to overcome the class im-
balance and the easy/hard examples challenges in our task.

As discussed in Section 3.1, the final feature maps are 1/16 of the original
images. Therefore, each pixel in the feature maps corresponds an region of 16×16
pixels. To generate candidates proposal, centered on each pixel in the feature
maps, 9 anchors in 3 different areas (302, 502, 702) and 3 different ratios (1:1,
2:1 and 1:2) are generated on the original input image. Every anchor is labeled
as either positive or negative sample based on the Intersection-over-Union (IoU)
with ground truth. The IoU is formally defined as: IoU = area(Proposal∩Ground Truth)

area(Proposal∪Ground Truth) ,

where the numerator is the overlapping area of box of candidate and the ground
truth box, and the denominator represents the union of them. The proposals which
have the IoU more than 0.7, are labeled as positive samples and the ones whose
IoU are smaller than 0.1 are labeled as the negative samples. Other proposals
are discarded. All the proposals exceeding the boundary of the image are also
discarded. During training, each mini-batch consists of 64 positive samples and
64 negative samples.

The loss function for training the RPN using focal loss is defined as:

LRPN({pi},{ti}) =
1

Ncls
∑

i
Lcls−FL(pi, p∗i )+λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (3)

where Lcls−FL is the focal loss for classification, as defined in Equation (2) and
Lreg is the loss for bounding box regression. pi is the predicted probability of
proposal i belonging to the foreground and p∗i is its ground truth label. Ncls denotes
the total number of samples and Nreg is the total number of positive samples. λ
is used to weight the loss for bounding box regression 2. The smooth L1 loss
function is adopted for Lreg as in Ren et al. (2015):

Lreg(ti, t∗i ) = fsmooth(ti − t∗i ), (4)

with fsmooth( j) =

{
0.5 j2 if | j|< 1
| j|−0.5 otherwise.

t = (tx, ty, tw, th) is the normalized information of the bounding boxes of the pos-
itive sample and t∗ is its ground truth. Each of the entries is formally defined

2λ is set to 15 in our experiments.Because the size of final feature maps is 47×42 and totally
128 anchors are chosen, therefore the ratio is ca. 15.
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as:

tx = (Px −Ax)/Aw, ty = (Py −Ay)/Ah,

tw = log(Pw/Aw), th = log(Ph/Ah),

t∗x = (P∗
x −Ax)/Aw, t∗y = (P∗

y −Ay)/Ah, (5)

t∗w = log(P∗
w/Aw), t∗h = log(P∗

h /Ah),

where (Px,Py) is the center coordinate of the predicted bounding box and (Pw,Ph)
is its predicted width and height, and so as the the bounding box information of
the anchors A= (Ax,Ay,Aw,Ah). P∗ is the ground truth bounding box information.

The RPN layer output a set of candidates which are likely to be the objects of
interest, i.e.vehicles in this work, and there predicted bounding boxes. Then, the
features covered by these bounding boxes are cropped out from the feature maps
and go through the region of interest (ROI) pooling layer to get a fix the size of
features.

Finally, the final classifier subnet are fed with these features and classify their
labels, and predict their bounding boxes further. The loss function of the classifier
subnet for each candidate is formally defined as:

Lclassi f ier(P,T ) = Lcls−FL(P,P∗)+λ2P∗Lreg(T,T ∗) (6)

where T is defined as:

Tx = (Px −Ax)/Aw, Ty = (Py −Ay)/Ah,

Tw = log(Pw/Aw), Th = log(Ph/Ah),

T ∗
x = (P∗

x −Ax)/Aw, T ∗
y = (P∗

y −Ay)/Ah, (7)

T ∗
w = log(P∗

w/Aw), T ∗
h = log(P∗

h /Ah),

The Px, Ax and P∗
x denote the bounding boxes of prediction results, anchors and

ground truth. The other subscripts of y, w and h are the same as x. We set λ2 = 1 to
equal the influence of classification and bounding box prediction. During training,
the classifier subnet is trained using positive and negative samples in ratio of 1 : 3,
same as the conventional training strategy (Ren et al., 2015).

4. ITCVD Dataset

In this section, we introduce the new large-scale, well annotated and challeng-
ing ITCVD dataset. The images were taken from an airplane platform which flied
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over Enschede, The Netherlands, in the height of ca 330m above the ground (Slag-
boom en Peeters, 2017). The images are taken in both nadir view and oblique
view, as shown in Figure 5. The tilt angle of oblique view is 45 degrees. The
Ground Sampling Distance (GSD) of the nadir images is 10cm.

(a) Nadir view (b) Oblique view

Figure 5: Example images in ITCVD dataset, which are taken in both nadir view (a) and oblique
view (b).

The raw dataset contains 228 aerial images with high resolution of 5616×
3744 pixels in JPG format. Because the images are taken consecutively with a
small time interval, there is ca. 60% overlap between consecutive images. It is
important to make sure that, the images used for training do not have common
regions with the images that are used for testing. After careful manual selection
and verification, 173 images are remained among which 135 images with 23543
vehicles are used for training and the remaining 38 images with 5545 vehicles for
testing. Each vehicle in the dataset is manually annotated using a bounding box
which is denoted as (x,y,w,h), where (x,y) is the coordinate of the left-up corner
of the box, and (w,h) is the width and height of the box respectively.

5. Experiments

In this section, we discuss about the experimental settings and datasets, in
which we evaluate the proposed method and compare with the state-of-the-art
object detectors.

5.1. Dataset and experimental settings
We evaluate our method in our ITCVD and DLR 3K datasets (Liu and Mat-

tyus, 2015). The statistic information of the two datasets are listed in Table 1. The
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state-of-the-art object detector Faster R-CNN (Ren et al., 2015) is implemented in
these datasets to provide a strong baseline.

Training set Testing set Image size
ITCVD 135 images (23543 vehicles) 38 images (5545 vehicles) 5616×3744
DLR 3K 10 images (3505 vehicles) 10 images (5928 vehicles) 5616×3744

Table 1: Statistic of ITCVD dataset and DLR 3K dataset (Liu and Mattyus, 2015).

TO save the GPU memory, each original image in the datasets are cropped
into small patches uniformly. The resulting new image patches are in the size of
674×752 pixels. The coordinate information of annotation is also updated in the
new cropped patches. In the DLR 3K dataset, each vehicle is annotated with a
tightly fit bounding box. To adapt our experiment settings, the original annotation
is transformed to a normal square bounding box which is expressed with its center
point, height and width.

The deep learning models are implemented in Keras with TensorFlow Abadi
et al. (2016) backend. The ResNet-50 network He et al. (2016) is used as the back-
bone CNN structure for feature learning for Faster R-CNN and our model. We
use a learning rate of 0.00001 to train the RPN. Note that, other CNN structures,
e.g.VGGnet Simonyan and Zisserman (2014) and Google Inception Szegedy et al.
(2016), are also applicable in our framework. The CNN structure are pre-trained
on ImageNet dataset Deng et al. (2009).

To evaluate the experimental results, the metrics of recall/precision rate and
F1-score are used, which are formally defined as:

Recall Rate (RR) =
TP

TP+FN
, (8)

Precision Rate (PR) =
TP

TP+FP
, (9)

F1-score =
2×RR×PR

RR+PR
. (10)

where, T P, FN, FP denote the true positive, false negative and false positive
respectively. Furthermore, the relationships between the IoU and RR, PR are also
evaluated respectively.

5.2. Results on ITCVD dataset
We evaluated our method DFL-CNN in our challenging ITCVD dataset. The

state-of-the-art object detector Faster R-CNN (Ren et al., 2015) is implemented to
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provide a strong baseline. In addition, traditional HOG + SVM method Dalal and
Triggs (2005) is provided as a weak baseline.

Figure 6 depicts the relationship between recall rate and the precision rate of
DFL-CNN, Faster R-CNN and HOG+SVM algorithms with different IoU in the
ITCVD dataset. It is obvious that the CNN based methods (DFL-CNN in green
curve and Faster R-CNN in red curve) are significantly better than the traditional
method (HOG+SVM in black curve). In the relation between recall and preci-
sion, our DFL-CNN method also perform better than Faster R-CNN. According
to these relationship curves, IoU = 0.3 is a good balance point for the follow-
ing experimental settings, which reports high recall rate and precision at the same
time. Note that, it is also a conventional setting in the task of object detection.
The quantitative results of these three methods are given in Table 2 (the results are
given with IoU = 0.3). We can see that, our method outperforms the others.

IoU
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Figure 6: The relationship between IoU and recall rate (a), IoU and precision rate (b) and recall
and precision (c) of DFL-CNN, Faster R-CNN, HOG+SVM in the ITCVD dataset respectively.

HOG+SVM Faster R-CNN DFL-CNN
Recall Rate 21.19% 88.38% 89.44%

Precision Rate 6.52% 58.36% 64.61%
F1-score 0.0997 0.7030 0.7502

Table 2: Comparison of baselines and the DFL-CNN method in ITCVD dataset.

To justify the gain by using skip connection and focal loss function, we con-
ducted extensive experiments in ablation studies. First, we train two frameworks
both using double focal loss function. But one of the framework has skip connec-
tion of the feature maps and the other one not. The qualitative results are shown
in Figure 7. We can observe that, the bounding boxes predicted by the frame-
work with skip connection of the feature maps are much more precise than those
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that predicted by the framework without skip connection. Individual vehicle is
also separated better from others by using the shallow features. Then, we train

(a) Without skip connection (b) With skip connection

Figure 7: Qualitative comparison of bounding box prediction of different frameworks that has no
(a) and has (b) skip connection. Other settings are the same.

two frameworks with the skip connection. But one of the framework is trained
using CE as loss function and the other using double loss function. The qualita-
tive results are shown in Figure 8. In the results given by CE-trained framework,
many background objects that have similar appearances as vehicle are easily to be
falsely detected as vehicle. The framework trained using double focal loss func-
tion distinguishes these hard negative samples much better from the real vehicles.

(a) Training with CE loss function (b) Training with FL function

Figure 8: Qualitative comparison of vehicle detection of different frameworks that is trained using
CE loss(a) and FL (b) function. Other settings are the same.

Figure 9 gives some examples of bad detection results of the proposed method.
Even through our method achieves significant improvements in detection preci-
sion and recall rate than the baseline methods, our detector still misses to detect
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some obvious vehicles, especially in the crowded parking lot, as shown in Fig-
ure 9a. On the other hand, some objects which have very similar appearances as
vehicle are also falsely detected, as shown in Figure 9b.

(a) Miss detected vehicles (b) False detection

Figure 9: Qualitative examples of incorrect detection by our model. The boxes in red thin line
denote the detection results, and the green boxes denote the missed detected vehicles while the
blue boxes indicate the false positive prediction.

5.3. Results on DLR 3K dataset
We also evaluated our model in DLR 3K dataset (Liu and Mattyus, 2015).

In Figure 10, the relationship between the recall rate and precision is depicted,
both for the Faster-RCNN and the proposed method. Figure 10 also indicate that,
our method outperform the standard Faster R-CNN in terms of recall rate and
precision. In particular, we compared the performance of Faster R-CNN and DFL-
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Figure 10: The relationship between recall and precision (a), IoU and precision (b) and IoU and
recall rate (c) of DFL-CNN and Faster R-CNN in the DLR 3K dataset (Liu and Mattyus, 2015).

CNN in the case of densely parked vehicles in DLR 3K dataset, as shown in

15



Figure 11. From the qualitative results we can see that, DFL-CNN (Figure 11b)
detected more individual vehicles and predicted more precise bounding boxes than
Faster R-CNN (Figure 11a).

(a) Detection results of Faster R-CNN (b) Detection results of DFL-CNN

Figure 11: Qualitative comparison of detection results given by Faster R-CNN (a) and DFL-CNN
(b) in the DLR 3K dataset, respectively.

6. Conclusion

In this paper, we have proposed a specific framework DFL-CNN for vehicle
detection in the aerial images. We fuse the features properties learned in the lower
layer of the network (containing more spatial information) and the ones from
higher layer (more representative information) to enhance the network’s ability of
distinguishing individual vehicles in a crowded scene. To address the challenges
of class imbalance and easy/hard examples, we adopt focal loss function instead
of the cross entropy in both of the region proposal stage and the classification
stage. We have further introduced the first large-scale vehicle detection dataset
ITCVD with ground truth annotations for all the vehicles in the scene. Compared
to DLR 3K dataset, our benchmark provides much more object instances as well
as novel challenges to the community. The experimental results show that our
method outperforms the state-of-the-art in these two datasets. For future work,
we will extend DFL-CNN to recognize the vehicle types and detect the vehicle
orientations. We will also continue to update ITCVD dataset to grow in size and
scope. We believe the new ITCVD dataset will promote the development of object
detection algorithms in the photogrammetry community.
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