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Abstract—In this work, we derive the rate-distortion function
for video coding using the simplified affine, 4-parameter motion
compensation model as it is used in the Joint Exploration Model
(JEM) by the Joint Video Exploration Team (JVET) on Future
Video coding. We model the displacement estimation error during
motion estimation and obtain the bit rate by applying the rate-
distortion theory. We assume that the displacement estimation
error is caused by perturbed parameters of the simplified affine
model. These transformation parameters are assumed statistically
independent, with each of them having a zero-mean Gaussian
distributed estimation error. The joint probability density func-
tion (p.d.f.) of the displacement estimation errors is derived
and related to the prediction error. We calculate the bit rate
as a function of the accuracy of the parameter estimation for
the simplified affine motion model. Finally, we compare our
results with a translational motion model as used in video
coding standards like HEVC as well as with a full affine motion
model with 6 degrees of freedom. For aerial sequences containing
distinct affine motion, the minimum required bit rate to encode
the prediction error can be significantly reduced from 2.5 bit/sample

to 0.02 bit/sample for a reasonable operating point and a block size
of 64×64 pel2.

Index Terms—Affine Transformations, Global Motion Compen-
sation, GMC, Rate-Distortion Theory, Efficiency Analysis, Aerial
Video Coding, JVET, JEM

I. Introduction

Motion compensated prediction (MCP) is one of the key
elements in modern hybrid video coding standards like Ad-
vanced Video coding (AVC) [1] or High Efficiency Video Coding
(HEVC) [2]. MCP is typically performed block-wise for blocks
of different sizes, e. g. of 4 × 4 up to 16 × 16 pel2 for AVC or
64×64 pel2 for HEVC. The minimum bit rate of the prediction
error of motion compensated prediction as a function of the
variance of the displacement estimation error was theoretically
derived by Girod [3].

Nowadays, new scenarios with distinct global motion—like
videos captured from Unmanned Aerial Vehicles (UAV)/Micro
Aerial Vehicles (MAV) like multicopters—emerge and are also
considered in recent test sets [4]–[6]. These video sequences
contain higher-order global motion, which cannot accurately be

described by a purely translational motion model. To cope with
such motions better, the ITU-T/ISO/IEC Joint Video Exploration
Team (JEVT) (on Future Video Coding) incorporated a simplified
4-parameter affine motion model into their reference software
Joint Exploration Model (JEM) [7], [8]. Affine (as well as
homographic) global motion compensation (GMC) is also
contained in the video codec AV1 [9]. Early JVET studies based
on the initial JEM software (ver. 1.0) on the common test set
[10] (containing no sequences with distinct non-translational
motion) show coding efficiency gains of up to 1.35 % (JEM
1.0, configuration Low Delay P (LDP) main 10) [11], [12].
Larger gains can be expected for sequences containing more
higher-order motions like rotation or zoom [13], [14].

Recently, the rate-distortion optimized efficiency of affine
global motion compensation has been analyzed in [15]. How-
ever, there a full affine model with 6 degrees of freedom was
assumed. Since shearing is rare to observe in real data, a
simplified model with only 4 degrees of freedom (rotation,
scaling, translation) is sufficient to cover most affine motion
contained in a scene. Consequently, a simplified model is
employed in JEM. For such a model, the assumption of
independent estimated affine transformation parameters cannot
be met. The effect of global motion parameter inaccuracies
employing such a simplified model has been investigated in
[16]. In their work, Dane and Nguyen introduced probabilistic
rotational, scale and translational errors and derived that by
doubling the accuracy of the motion parameter estimates, a
theoretical gain up to 6 dB can be obtained in prediction error
variance (which corresponds to 1 bit/sample). However, they did
not relate their results to other motion models (e. g. purely
translational, full affine), albeit the bit rate for encoding the
prediction error highly depends on the used motion model.
Moreover, the bit rate of the prediction error was not considered
in their work at all.

In this work, we present an efficiency analysis including
rate-distortion optimization of the simplified affine motion
model. We analytically derive the power spectral density of the



prediction error after motion compensation as a function of the
(simplified) affine transform parameter accuracy in Section II,
especially considering dependencies between the parameters
of the simplified affine model. Simulations are presented in
Section III and Section IV concludes the paper.

II. Efficiency Analysis of the Simplified AffineModel
An efficiency analysis of a full affine motion model has

recently been presented in [15]. In contrast to that we assume
a simplified affine motion model as used in JEM and thus
have to consider dependencies between the parameters of the
simplified affine model. First, we model the joint probability
density function (p.d.f.) of the displacement estimation error
in Subsection II-A before we calculate the bit-rate of the
prediction error according to the rate-distortion theory [17] in
Subsection II-B.
A. Derivation of the probability density function

We assume a simplified affine model with 4 parameters,
as proposed by [13] and used in the JEM software. With the
rotation angle θ, the scaling factor s in both horizontal and
vertical direction, and the translational parameters c and f , in
[13] the relationship between the coordinates x′ and y′ before
and x and y after the transformation is described asx = s cos θ·x′ + s sin θ·y′ + c ;

y = −s sin θ·x′ + s cos θ·y′ + f .
(1)

Replacing (s cos θ) and (s sin θ) with (1+a) and b, respectively,
(1) can be rewritten asx = (a + 1) · x′ + b · y′ + c ;

y = −b · x′ + (a + 1) · y′ + f .
(2)

We assume that each parameter a, b, c, f is perturbed by
an independent error term ei, with i = {a, b, c, f } caused by
inaccurate parameter estimation. The perturbed coordinates x̂,
ŷ lead to estimation errors in horizontal and vertical direction
of ∆x and ∆y (in pel)∆x = x̂ − x = ea · x′ + eb · y′ + ec ;

∆y = ŷ − y = −eb · x′ + ea · y′ + e f .
(3)

Assuming each error term ei to be zero-mean Gaussian
distributed leads to the probability density functions (p.d.f.s)

p(ei) =
1√

2πσ2
ei

· exp
− e2

i

2σ2
ei

 (4)

We assume a Gaussian distribution as the worst-case scenario
since it has the maximal entropy of all distributions with the
same variance. For statistically independent variables we get
a joint p.d.f. pEa,Eb,Ec,E f (ea, eb, ec, e f ) for the random variables
Ea, Eb, Ec, E f generating the observations ea, eb, ec, e f :

pEa,Eb,Ec,E f (ea, eb, ec, e f ) = p(ea) · p(eb) · p(ec) · p(e f ) . (5)

To convert the p.d.f. pEa,Eb,Ec,E f (ea, eb, ec, e f ) to the desired
p.d.f. p∆X,∆Y (∆x,∆y) of the displacement estimation errors (in
pel) ∆x, ∆y caused by affine parameter inaccuracies, we use
the transformation theorem for p.d.f.s [18]

pY1,...,YM
(y1, . . . , yM) =

∫ ∞

−∞

· · ·

∫ ∞

−∞

pX1,...,XN
(ξ1, . . . , ξN)

·

M∏
m=1

δ
(
ym − gm(ξ1, . . . , ξN)

)
dξ1 . . . dξN , (6)

with δ(·) denoting the Dirac delta function, g1, . . . , gM being
functions y1 = g1(x1, . . . , xN), . . . , yM = gM(x1, . . . , xN) and
pY1,...,YM

(y1, . . . , yM) being the joint p.d.f. With (3) this yields

p∆X,∆Y (∆x,∆y) =

∫
R4

pEa,...,E f (ea, . . . , e f )

· δ
(
∆x − (eax′ + eby′ + ec)

)
· δ

(
∆y − (−ebx′ + eay′ + e f )

)
deadebdecde f , (7)

with a dependency on the location coordinates x′, y′ in the
source frame. Using the properties of the delta function gives

p∆X,∆Y (∆x,∆y)

=

∫
R2

pEa,Eb,Ec,E f (ea, eb,∆x − eax′ − eby′,

∆y + ebx′ − eay′) deadeb . (8)

From (8) with (4) we get
p∆X,∆Y (∆x,∆y) =

1
(2π)2σeaσebσecσe f

·

∫
R2

exp
(
−

e2
a

2σ2
ea

−
e2

b

2σ2
eb

−
(∆x − eax′ − eby′)2

2σ2
ec

−
(∆y + ebx′ − eay′)2

2σ2
e f

)
deadeb . (9)

After the two integrations we obtain

p∆X,∆Y (∆x,∆y) =
1

2π
√

N
· exp

( M
2N

)
(10)

with N =

((
x′2 + y′2

)2
σ2

eb
+ y′2σ2

ec
+ x′2σ2

e f

)
σ2

ea

+
(
x′2σ2

ec
+ y′2σ2

e f

)
σ2

eb
+ σ2

ec
σ2

e f
, (11)

and M = −
(
x′∆y − y′∆x

)2 σ2
ea
−

(
x′∆x + y′∆y

)2 σ2
eb

− ∆x2σ2
e f
− ∆y2σ2

ec
. (12)

Transforming (10) into the form of a common bivariate
zero-mean normal distribution with ρ being the correlation
coefficient between ∆X and ∆Y leads to the desired final p.d.f.
of the displacement estimation error

p∆X,∆Y (∆x,∆y) =
1

2πσ∆Xσ∆Y
√

1 − ρ2

· exp
− 1

2
(
1 − ρ2)

 ∆x2

σ2
∆X

+
∆y2

σ2
∆Y

−
2ρ · ∆x · ∆y
σ∆X · σ∆Y

 (13)

with σ2
∆X = N ·

( (
σ2

ea
y′2+σ2

eb
x′2+σ2

e f

)
·
(
1 − ρ2

) )−1
, (14)

σ2
∆Y = N ·

( (
σ2

ea
x′2+σ2

eb
y′2+σ2

ec

)
·
(
1 − ρ2

) )−1
, (15)

ρ=

(
σ2

ea
x′y′−σ2

eb
x′y′

)
√
σ2

ea
y′2 + σ2

eb
x′2 + σ2

e f

√
σ2

ea
x′2 + σ2

eb
y′2 + σ2

ec

. (16)

As can be seen, the variances σ2
∆X and σ2

∆Y depend on the
locations x′, y′. Moreover, the variances of ∆x and ∆y both
depend on the variances of all estimated parameters and thus



the underlying random processes ∆X and ∆Y are dependent.
For equal variances σ2

ea
=σ2

eb
, ρ becomes zero.

B. Rate-distortion analysis

To derive the bit rate for coding the prediction error in motion
compensated video coding, we use the findings from Girod,
who related the displacement estimation error p∆X,∆Y (∆x,∆y) to
the prediction error ep [3]. Applying the rate-distortion theory
[17] results in the minimum achievable bit rate for encoding
the prediction error. In this subsection we will summarize the
derivations from [3].

Given a displacement estimation error p∆X,∆Y (∆x,∆y), we
obtain the power spectral density of the prediction error

S ee(Λ) = 2 S ss(Λ)
[
1 − Re(P(Λ)

]
+ Θ , (17)

where S ss(Λ) denotes the power spectral density of the video
signal s, Λ being the two-dimensional (2D) spatial frequency
vector Λ := (ωx, ωy), P(Λ) being the 2D Fourier transform of
the probability density function (p.d.f.) of the displacement
estimation error, and Θ being a parameter that generates the
function R(D) by taking on all positive real values ( [3],
equation (28)). S ss(ωx, ωy) was determined according to O’Neil
[19] and Girod [3], where the statistics of the source was
assumed to be represented by the autocorrelation function

Rss(∆x,∆y)= E
[
s(x, y)·s(x−∆x, y−∆y)

]
Bexp

(
−α

√
∆x2 +∆y2

)
. (18)

We assume α not to be isotropic and thus replace (18) by
exp

(
−

√
α2

x∆x2 + α2
y∆y2

)
. The exponential drop rates αx and

αy in x- and y-direction can be determined as the negative
logarithm of the correlations between horizontally and vertically
adjacent pixels αx =− ln (ρx) and αy =− ln (ρy) [19]. For this, the
Pearson correlation coefficients ρ(X,Y)=

cov(X,Y)
σXσY

and similarly
ρY with the standard deviations σX , σY and the covariance
cov were determined [20]. The desired power spectral density
S ss(Λ) to be inserted in (17) is now the Fourier transform of
(18).

Finally, we derive the distortion D as well as the corre-
sponding minimum transfer rate R(D) from the rate-distortion
function for a given mean-squared error ([3], equations 19–20)

D =
1

4π2

"
Λ

min
[
Θ, S ss(Λ)

]
dΛ , (19)

R(D) =
1

8π2

"
Λ:
(
S ss(Λ)>Θ

and S ee(Λ)>Θ
)

log2

[
S ee(Λ)

Θ

]
dΛ bit . (20)

We would like to emphasize that our σ2
∆X and σ2

∆Y are
location dependent, since they are functions of the source
pixel coordinates x′, y′. Consequently, p∆X,∆Y (∆x,∆y), P(Λ)
and S ee(Λ) are also location dependent.

Using the idea of generating the rate-distortion function for
translative motion like explained by Girod [3] and our results
from Section II, we derived the rate-distortion function for the
simplified affine motion model as defined in (2).

III. Simulations

In our simulations, we evaluate the minimal bit rate for
simplified affine global motion compensated prediction. As we
have seen in the last section, the variance of the displacement
estimation error p∆X,∆Y (∆x,∆y) depends on the location in the
image according to (14) and (15). Thus, the resulting minimum
achievable bit rate is location dependent. To obtain the total
bit rate for encoding one frame, we average the pel-wise bit
rates afterwards.

For calculating the power spectral density S ss of the video
signal in (17) and the distortion in (19), we used the exponential
drop rates αx =0.9744 and αy =0.9677 of the autocorrelation
function (eq. (18)) as measured in [15].

Evaluation of the rate-distortion theory for a distortion of
SNR=30 dB results in minimum required bit rates for different
variances σ2

ei
of Gaussian displacement estimation error p.d.f.s

of the affine transform parameters as shown in Fig. 1. For
the simulations we assumed the affine parameters to be in a
fixed ratio (σ2

eb
= 2σ2

ea
) and both translational parameters to

be equal (σ2
ec

=σ2
e f

). The minimum bit rates as a function of
the affine and translational variances are presented in Fig. 1a.
The relationship between σ2

ea
and σ2

eb
is justified by the fact

that small rotation angles (Θ ≤ 5°) are more likely to occur.
Then, exploiting the small-angle approximation, s cos Θ and
s sin Θ from (1) approximately become s and s ·Θ, respectively.
Assuming s=1, we get ea = â−a=cos Θ̂−cos Θ=−2 sin( Θ̂+Θ

2 ) ·
sin( Θ̂−Θ

2 ) ≈ −2 sin(Θ) ·sin( 1
2 ∆Θ) and accordingly eb = b̂ − b =

sin Θ̂−sin Θ≈2 cos(Θ) ·sin( 1
2 ∆Θ) for Θ̂≈Θ. Assuming small Θ,

we get ea≈−2Θk and eb≈2k, with k=sin( 1
2 ∆Θ) being constant.

Exploiting the definition of the variance σ2
ei

=
∫ ∞
−∞

p(ei)(ei −

E{ei})2dei and using ea and eb as derived above, for small
angles we get σ2

ea
< σ2

eb
.

The variances measured for aerial videos from the TAVT data
set [6], [21], employing the simplified affine model, confirm
the relationship with σ2

ea
=2.3e−7, σ2

eb
=4.6e−7 on average.

It is noteworthy that the operating point σ2
ea

, σ2
ec/ f moves

towards significant higher bit rates, if the motion contained in
the sequence cannot be represented by the motion model, i. e.
if a purely translational motion model is used to estimate a
sequence containing distinct (non purely translational) affine
motion. For instance, the minimum required bit rate for an
accurate simplified affine estimation of σ2

ea
= σ2

ec/ f
= 3e−7

amounts 0.019 bit/sample. In contrast to this, for a purely transla-
tional motion model, the affine part of the motion contained in
the scene cannot be covered at all, leading to high σ2

ea
, σ2

eb
and

consequently high bit rates of about 2.5 bit/sample (most right
plateau in Fig. 1a).

In Fig. 1b the bit rates are compared for a full affine model
(6 degrees of freedom) (circles) as in [15] and a simplified,
4-parameter model (crosses) as analyzed in this paper for
64×64 pel2 blocks. From the plots we see that the simplified
model requires a smaller amount of bits for encoding the
prediction error compared to a full affine model for estimations
with equal variances as expected. However, the difference is



(a) Block size 64 × 64 pel2. (b) Simplified vs. full affine (64 × 64 pel2)
with magnification (bottom right).

Figure 1. Minimum required bit rate versus variances σ2
ei

, i = a, b, c, f of Gaussian displacement estimation error p.d.f.s for a distortion of SNR = 30 dB
assuming σ2

eb
=2σ2

ea and σ2
ec =σ2

e f
. The surface in (a) shows rates for a block size of 64 × 64 pel2) and the transform center in the center of the block, the 2D

cuts in (b) represent achievable gains of our simplified affine vs. the full affine motion model from [15] for the same block size.

negligible in terms of bit rate saving. Thus, we recommend to
use the simplified affine model for encoding purposes.

IV. Conclusion
In our paper we derive the minimum required bit rate for

encoding the prediction error using a simplified affine motion
model with 4 degrees of freedom for motion compensated
prediction by applying the rate-distortion theory.

We compare the results for the simplified affine motion
model with only 4 degrees of freedom with a full affine motion
model (6 degrees of freedom) and analyzed that the coding
efficiency can be slightly increased by use of the simplified
motion model. For encoding the prediction error the minimum
required bit rate can be highly reduced from 2.5 bit/sample to
about 0.2 bit/sample for sequences containing distinct affine (non-
translational) motion, e. g. in videos captured from a UAV, and
a reasonable operating point. This, as a consequence, shows,
that the usage of the simplified affine model in JEM is justified.
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