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A Two-Level Scheme for Quality Score Compression

JAN VOGES,1 ALI FOTOUHI,2 JÖRN OSTERMANN,1 and MUHAMMED OĞUZHAN KÜLEKCI3

ABSTRACT

Previous studies on quality score compression can be classified into two main lines: lossy
schemes and lossless schemes. Lossy schemes enable a better management of computational
resources. Thus, in practice, and for preliminary analyses, bioinformaticians may prefer to
work with a lossy quality score representation. However, the original quality scores might be
required for a deeper analysis of the data. Hence, it might be necessary to keep them; in
addition to lossy compression this requires lossless compression as well. We developed a
space-efficient hierarchical representation of quality scores, QScomp, which allows the users
to work with lossy quality scores in routine analysis, without sacrificing the capability of
reaching the original quality scores when further investigations are required. Each quality
score is represented by a tuple through a novel decomposition. The first and second di-
mensions of these tuples are separately compressed such that the first-level compression is a
lossy scheme. The compressed information of the second dimension allows the users to
extract the original quality scores. Experiments on real data reveal that the downstream
analysis with the lossy part—spending only 0.49 bits per quality score on average—shows a
competitive performance, and that the total space usage with the inclusion of the compressed
second dimension is comparable to the performance of competing lossless schemes.

Keywords: quality score compression, variant calling, genomic data management, lossless data

compression, lossy data compression, high-throughput sequencing.

1. INTRODUCTION

Sequencing data produced by high-throughput sequencing machines are typically stored in the

FASTQ format (Cock et al., 2010). Due to the growing volumes of sequencing data, processing,

transmission, and storage of the FASTQ files becomes challenging. Therefore, the compression of data stored

in FASTQ files has been receiving great interest in the last years (Numanagić et al., 2016). Compact

representations of the data do not only help during storage and transmission by decreasing the required disk

space or by enabling the possibility to better manage the available bandwidth, but also help during the

analysis of the huge data volumes when the applied compression schemes support functionality such as

random access over the compressed data directly. That dimension, namely compressive genomics, has been

proposed and discussed in previous studies (Loh et al., 2012; Berger et al., 2016).
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FASTQ files include four lines per read. The first and the third line, beginning with the @ and + symbols,

respectively, indicate the read identifier and an optional description. The second line lists the read-out

nucleotides. For each nucleotide in the second line, a corresponding quality score (QS) Q is stored in the

fourth line. The quality scores indicate the accuracy of the base calling by Q = - 10 � log10 P, where P is the

error probability of the base-calling process (Ewing and Green, 1998).

So far, efforts in compressing raw sequencing data stored in FASTQ files have been focusing on

compressing the nucleotide sequences, quality scores, and read identifiers separately. This approach yields

a better performance than jointly compressing the different streams since these streams have divergent

statistical properties. Previous studies on quality score compression can be further separated into two

categories: lossy schemes and lossless schemes. The lossy methods achieve much better compression ratios

by sacrificing some information. This is done by reducing the alphabet size of the quality scores according

to specific quantization methods. Although these lossy approaches help a lot in terms of storage and

transmission of the data, the original values might still be required for further analyses (Van der Auwera

et al., 2013).

The daily practice in sequencing data analysis starts with regular routines. In further steps of the analysis,

deeper investigations are performed on the reads that are mapped to regions of interest detected by these

regular routines. Quantized quality scores may work well during the initial processing unless the incor-

porated quantization does impact further steps significantly. Thus, when the target regions regarding the

tested hypothesis become clear, necessity to access the original quality scores of the selected reads may

become unavoidable during further downstream analyses. Yet another reason to keep the original values

stems from the underlying thought that the original quality scores might be required by new methods in the

future. Specifically, in large population genomics projects, the owners of the data may prefer lossless

compression techniques. Thus, an approach would be preferable where the users have the choice to work

effectively in the first stage with quality scores represented with a lossy scheme, but at the same time have

the choice to reach the original values in following analysis steps.

Motivated by this demand, we explore in this study a two-level approach for the compact representation

of the quality scores. By using a novel decomposition scheme D, we represent each quality score Q with a

tuple D(Q)! Æq1‚ q2æ. The compression of the q1 values constitutes the first compression level, and

compressing the q2 values creates the second level, where the q1 values determine the context during the

compression of the q2 sequence. The first level is the lossy representation of the quality scores Q. Thus,

working with this level corresponds to a lossy scheme. Given q1 and q2, the inverse decomposition D - 1

yields the original quality scores by Q)D - 1(q1‚ q2). This way, we preserve the capability to extract the

original values. With such a two-level approach, both lossy compression and lossless compression of the

quality scores can be achieved hierarchically. In the scope of this article, we evaluate the lossy layer in

terms of its effect on downstream analyses. The space occupied by the first level and the second levels is

expected to be competitive to previously proposed lossless schemes.

2. PREVIOUS STUDIES

In a FASTQ file the alphabet for the nucleotides (i.e., A, C, G, T, and N) is usually much smaller than

that of the quality scores, which typically stem from an alphabet of size 40 or 41 (Cock et al., 2010). Thus,

quality scores at full resolution are, in general, more difficult to compress. Therefore, the overall success of

compressing an input FASTQ file depends more on the representation of the quality scores than on the

compression of the nucleotide sequences.

Lossless compression techniques focus on detecting regularities in quality score streams (Wan et al.,

2012). For instance, some of the quality scores are likely to be more frequent than others, or several biases

may appear in some positions of the reads due to the underlying sequencing technology. Remember that a

compression scheme can be viewed as a two-step process, where the first phase is to devise a context model

describing the data, and the second phase is to encode the data that are represented with that model using an

entropy coder. General-purpose FASTQ compressors mainly differ in their context modeling approaches.

The DSRC scheme defines three models for quality score streams, and represents a given quality score

sequence according to its best-fitting model (Deorowicz and Grabowski, 2011). SCALCE (Hach et al.,

2012) and Quip ( Jones et al., 2012) make use of a single standard order-3 context model, and encode every

quality score according to its three immediate predecessors. Fastqz (Bonfield and Mahoney, 2013) applies a
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more complex scheme that uses relations in the near predecessors to define the context of the current

quality score.

Lossy compression was considered based on the assumption that the resolution of raw quality scores is

much higher than required for accuracy evaluation, and that the tools in the analysis pipelines will not be

affected much from a lossy representation. It was proven that this assumption is true, and more than that,

actually lossy representations improve the efficiency of downstream analyses in many cases (Yu et al.,

2015; Ochoa et al., 2016). The authors (Wan et al., 2012) explored different binning strategies and their

effects on the compression efficiency. Besides simple bucketing that uses fixed-length intervals, variable-

length intervals inferred through a number of different statistical measures have also been proposed

(Cánovas et al., 2014).

Another statistical approach has been introduced with QualComp (Ochoa et al., 2013). QualComp fits a

Gaussian distribution to the quality score sequences (i.e., vectors), and provides users with the ability to define

the level of acceptable distortion during encoding. According to the specified number of bits to be used per

quality score, QualComp performs the optimal alteration of the quality scores such that the mean squared

error is minimized according to the precomputed Gaussian model. This idea has been further improved by the

more recent QVZ and QVZ 2 compressors (Malysa et al., 2015; Hernaez et al., 2016). Besides the binning

and statistical inference approaches, there are other efforts which exploit the information contained in the

read-out nucleotide sequences ( Janin et al., 2014; Yu et al., 2015; Voges et al., 2017). For example, the

Quartz compressor (Yu et al., 2015) sets the quality scores of the most frequent k-mers to a predefined high

value with the motivation that if a specific nucleotide sequence is observed many times, then its correctness

does not need any further verification from the quality scores. Thus, the quality scores can be set to a fixed

value. This way the entropy is reduced and higher compression performance is achieved.

3. PROPOSED METHODS

When an analysis pipeline automatically returns results for a set of reads (stored in a FASTQ file), the

analyst usually feels the necessity to perform a verification of these results by investigating the reads

together with their associated quality scores. A bioinformatician working on such reads might become

suspicious when she observes low-quality scores since those indicate a possible error in the base-calling

process, which could have then caused problems in the automatically produced results. Similarly, when

quality scores are larger than a threshold, it does not tell much to the analyst in most cases as there appears

to be not much practical difference between the 99.999% accuracy with Q = 50 than 99.9999% with Q = 60.

This difference becomes less and less important as long as the quality scores get higher. On the other side,

due to the logarithmic nature of the quality scores, Q = 10 is quite different from Q = 20, since the first case

implies 90% accuracy, whereas the second indicates 99% accuracy in the base-calling process.

Therefore, it seems that a simple bucketing approach with short intervals for the small quality scores and

larger intervals for the higher quality scores might work well in practical analyses. Hence, we propose to

decompose a quality score Q into the tuple

D(Q)! Æq1‚ q2æ (1)

such that

q1 = round(
ffiffiffiffi
Q

p
)‚ (2)

q2 = Q - q2
1 - q1 + 1

� �
: (3)

Notice that given q1 and q2, the inverse decomposition yields the original quality score as

Q =D - 1 q1‚ q2ð Þ = q2
1 - q1 + 1 + q2: (4)

This decomposition is inspired by the representation of integers in an Elias gamma code (Elias, 1975; or

its generalization, the Exp-Golomb code, Ostermann et al., 2004). Assume Q = q2
1 + c with c = 1 - q1 + q2. If

Q is an n-bit binary number, then q1 is an n/2-bit binary number and c lies in the interval 0‚ 2b½ �. Then q1

can be encoded using any universal coding. Given q1, the number of bits necessary to represent c can be

determined as log2 2q1 + 1ð Þ. However, as the scope of this work is the two-level representation of quality
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scores and not the exploration of sophisticated entropy coding schemes, we use the well-known general-

purpose compressor bzip2 for the compression of the tuples D(Q).

Table 1 shows the decomposition of quality scores in the interval [30‚ 43]. The proposed decomposition

creates buckets of length (2 � q1), where typically q1 2 f6‚ 7‚ 8‚ 9‚ 10‚ 11g since in the FASTQ format the

quality scores are between 33 and 126 (i.e., in the range of printable ASCII characters). The first (q1 - 1) of

the items in a bucket are promoted to a better quality, whereas the last q1 are faced with a penalty. Notice

that the (2 � q1) items long bins are relatively short for the smaller q1 values, which fits to the motivating

observation described above.

Without incorporating the q2 values, the representation of quality scores (only by their corresponding q1

values) creates a simple lossy scheme. In that sense, a FASTQ file in which all quality scores are changed to

their q2
1 values will exhibit a better compressibility since the alphabet for the quality scores is reduced to at

most 6 symbols instead of 94( = 126 - 33 + 1) possible characters. Remember that, in general, the observed

number of symbols is around 40 as opposed to the theoretically possible 90+ symbols. Similarly, when the

users would like to obtain the capability to retrieve the original scores, then they need to also keep the q2

sequence. Instead of handling the q2 sequence as a single stream, which would force the subsequent

compressor to assume the most general alphabet for the q2 sequence, clustering the q2 values according to

their corresponding q1 values would improve the compression ratio (as the q1 value in a tuple specifies the

exact alphabet for the q2 values). Thus, for each distinct q1 value observed in the input FASTQ file, we

maintain a separate sequence of q2 values. Finally, we compress the q1 values and the multiple q2 sequences

individually. Any general-purpose compressor can be applied. As already mentioned, we prefer to use

bzip2. Surely, the users of the proposed system can proceed with different choices at this step.

4. EXPERIMENTAL RESULTS

In this section, we provide experimental results for the evaluation of the proposed compression scheme

QScomp. We compare QScomp to three competitors, namely Crumble (https://github.com/jkbonfield/

crumble), Quartz (Yu et al., 2015), and QVZ 2 (Hernaez et al., 2016). Table 2 lists the tools, including

QScomp, which were selected for the evaluation in this work.

Note that QScomp is the only tool which truly is able to operate in the lossless and in the lossy mode.

The data sets used to evaluate the performance of the selected compression tools originate from the same

individual, namely NA12878. For this individual, the National Institute of Standards and Technology

(NIST) released a consensus set of variants, which we used for our analyses (Zook et al., 2016). Note that

similar analyses were conducted in other works (Alberti et al., 2016; Ochoa et al., 2016; Voges et al., 2017).

The selected data sets are shown in Table 3. For more information on the used data sets we refer the reader

to the Supplementary Data.

Moreover, for the evaluation of the proposed compression scheme QScomp, we selected three different

variant-calling pipelines. The first pipeline is composed of GATK (Van der Auwera et al., 2013) variant

Table 1. An Example Describing the Proposed

Representation of Quality Scores

(q1 - 1) items q2
1 q1 items

Q 30 31 32 33 34 35 36 37 38 39 40 41 42 43

q1 5 6 6 6 6 6 6 6 6 6 6 6 6 7

q2 9 0 1 2 3 4 5 6 7 8 9 10 11 0

The corresponding squared q1 value is highlighted in bold.

Table 2. Tools Selected for the Evaluation

Tool name Tool version Lossless (Y/N) Lossy (Y/N)

QScomp ec5c61b Y Y

Crumble 0.5 N Y

Quartz 0.2.2 N Y

QVZ 2 d5383c6 Y Y

4 VOGES ET AL.
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calling (using the HaplotypeCaller tool) and SNP extraction with subsequent filtering of variants using

GATK Vector Quality Score Recalibration (VQSR) with four different filter values. The second pipeline is

also composed of GATK variant calling using the HaplotypeCaller tool and SNP extraction, but followed

by the more traditional hard filtration of variants instead of VQSR. The third pipeline uses Platypus

(Rimmer et al., 2014) for variant calling. For the individual commands and tools and auxiliary files used,

we refer the reader to the Supplementary Data.

Each of the mentioned pipelines outputs a set of variants in the VCF file format. Subsequently, each set of

variants is compared with the consensus set of variants. We perform this comparison using the tool hap.py

(https://github.com/Illumina/hap.py) released by Illumina and adopted by the Global Alliance for Genomics

and Health (GA4GH). This benchmarking tool outputs the following values for each comparison:

� True Positives (T.P.): All those variants that are both in the consensus set and in the set of called

variants.
� False Positives (F.P.): All those variants that are in the called set of variants but not in the consensus set.
� False Negatives (F.N.): All those variants that are in the consensus set but are not in the set of called

variants.
� Non-Assessed Calls: All those variants that fall outside of the consensus regions defined by a BED file.

These values are used to compute the following two metrics:

� Recall/Sensitivity: This is the proportion of called variants that are included in the consensus set; that

is, R = T:P:
= T:P: + F:N:ð Þ,

� Precision: This is the proportion of consensus variants that are called by the variant calling pipeline;

that is, P = T:P:
= T:P: + F:P:ð Þ.

Finally, we measured the maximum memory usage and the execution time of each tool on each dataset

with GNU time.

4.1. Performance analysis of the proposed scheme

In this section we first show the compression ratios of all tools and for all datasets from Table 3.

Figure 1 shows the compression results for all tools in bits per quality score. In addition to the com-

pression results for the mentioned tools, we also show the memoryless entropy per original quality score,

which is 3.62 bits per quality score, averaged over all data sets. Furthermore, we show the gzip and bzip2

compression results for the raw quality scores, which are 3.54 bits per quality score and 3.27 bits per quality

score, also averaged over all data sets.

Table 3. Data Sets Selected for the Evaluation

ID Name Technology Coverage

H01 ERR174324 Illumina HiSeq 2000 14 ·
H11 SRR1238539 Ion Torrent 10 ·
H12 Garvan replicate Illumina HiSeq X 49 ·

FIG. 1. Compression ratios results.
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As shown in Figure 1, the lossy quality score representation obtained using QScomp with subsequent

bzip2 compression (i.e., ‘‘QScomp dim1 (+ bzip2 -9)’’) yields 0.49 bits per quality score on average. This

result is comparable to the results obtained with QVZ 2 when a target mean squared error (MSE) of 8 (i.e.,

‘‘QVZ 2 T8’’) is specified, which yields 0.35 bits per quality score on average.

We can observe from the figure that the lossless quality score representation of QScomp with subsequent

bzip2 compression (i.e., ‘‘QScomp dim1 and dim2.* (+ bzip2 -9)’’) is capable of delivering 3.35 bits per

quality score, which is slightly below the entropy, as expected. The two-level scheme of QScomp with

conditional compression of the second level with respect to first level is slightly superior to just com-

pressing the quality scores with gzip, and comparable to compressing the quality scores with bzip2. Thus,

QScomp does not sacrifice the lossless compression performance, while combining the lossless and lossy

compression through its unique two-level scheme. We finally show in Figure 1 the results of compressing

the joint single sequence of q2 values (i.e., ‘‘QScomp dim1 and dim2_a (+ bzip -9)’’). This experiment

yields 3.53 bits per quality score. These results suggest that the proposed separate compression of multiple

q2 sequences is superior to just compressing the q2 residues as a single stream.

Furthermore, we measured the maximum memory usage and the execution time of each tool with GNU

time 1.7.

The complete performance results for all tools and datasets are shown in Figure 2.

FIG. 2. Performance measurements results.
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The maximum RAM usage results for all tools and datasets are shown in Figure 3. Note that we applied a

logarithmic scaling to the Y-axis.

The running times for all tools and datasets are shown in Figure 4.

QScomp exhibits the least RAM usage of all tools, with 3.4 MB on average, due to its low algorithmic

complexity. The running times of QScomp are comparable to that of the different runs of QVZ 2 and even

two orders of magnitude lower than that of Quartz.

4.2. Variant calling results

In this section, we show the results of variant calling with the GATK + VQSR pipeline. For further

results obtained from running the other two pipelines, we refer the reader to the Supplementary Data. For

the first set of simulations we used the paired-end run ERR174324 of the NA12878 individual. This run was

sequenced by Illumina on an Illumina HiSeq 2000 system as part of their Platinum Genomes project. The

coverage of this data set is 14 · . Due to the size of data and following the approach of Ochoa et al., 2016,

we consider chromosomes 11 and 20. Furthermore, we averaged the Recall and Precision metrics over the

two chromosomes (11 and 20) and the four VQSR filter values (h 2 f90‚ 99‚ 99:9‚ 100g), which yield two

plots. In what follows, we did the same for the other data sets. Thus, we present in total six plots (i.e., 3 data

sets · 2 metrics) in this section.

We can observe from Figure 5 that QScomp compresses the quality scores down to 0.16 bits per quality

score while the Precision is retained. However, we also observe a slight drop in Recall, compared with the

results for the uncompressed data.

FIG. 4. Total running time results.

FIG. 3. Maximum RAM usage results.
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Next, we show the results for the SRR1238539 run on the NA12878 individual for which an Ion Torrent

sequencing machine was used. The coverage of this data set is 10 · . Again, chromosomes 11 and 20 were

considered due to the size of the data. Moreover, the results shown are also the results of averaging over the

same four filter values and both chromosomes. Figure 6 shows that QScomp is the worst performer in terms

of both Recall and Precision. Since all other tools exhibit a similar performance, we must conclude that the

FIG. 5. Recall and Precision results averaged over both chromosomes (11 and 20) and all four VQSR filter values for

the Illumina HiSeq 2000 data set (ERR174324) with a coverage of 14 · . VQSR, Vector Quality Score Recalibration.

FIG. 6. Recall and Precision results averaged over both chromosomes (11 and 20) and all four VQSR filter values for

the Ion Torrent data set (SRR1238539) with a coverage of 10 · .
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assumptions used for the construction of the binning scheme implemented in QScomp do not seem to hold

for the quality score statistics produced by Ion Torrent sequencing machines.

Finally, we used the first replicate of the sample data set generated by the Garvan Institute from the

Coriell Cell Repository NA12878 reference cell line. These data were sequenced on a single lane of an

Illumina HiSeq X machine. The coverage of this data set is 49 · . These results are shown in Figure 7. In

terms of Recall and Precision, QScomp exhibits a similar performance as for the data set ERR174323,

which is shown in Figure 5. Again, the Precision is retained. However, for this data set, a better Recall can

be observed for all tools, including QScomp. Due to the high coverage of this data set, the competing tools

are able to spend less bits per quality score than QScomp. Nevertheless, QScomp compresses the quality

scores down to 0.55 bits per quality score, yielding a compression factor of 5.9 with respect to the entropy

of the uncompressed data.

5. CONCLUSIONS

We presented a hierarchical quality score compression scheme, which represents the quality scores in

two levels. The first level maps each quality score to its nearest square integer, and the second level encodes

the distance of the original quality score to its mapped value. The impact of the lossy representation of

quality scores on downstream analyses was investigated using three different variant calling pipelines. For

data produced by Illumina sequencing machines, the downstream analysis results are competitive to the

results obtained with competing lossy quality score compressors. Here, the Precision is retained, while a

slight drop in Recall was observed. When this lossy level is accompanied by the second level, we observe

that the compression ratio is around the entropy of the original quality scores. This shows that the suggested

method to represent each quality score by a tuple does not have a negative effect on the lossless com-

pression ratio performance.

What is more, we showed that the proposed separate compression of multiple second-level streams is

superior to the compression of the second level as a single stream. Hence, the incorporation of other

quantization strategies from previous works into the proposed two-level scheme might be a reasonable

FIG. 7. Recall and Precision results averaged over both chromosomes (11 and 20) and all four VQSR filter values for

the Illumina HiSeq X data set (Garvan replicate) with a coverage of 49 · .
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future research avenue. Besides the compression ratios, the memory consumption and the running times are

also important parameters. In this study, with an average of only approximately 3.4 MB, QScomp shows a

significant reduction in peak memory usage, and achieved the highest speed in the benchmark.

Previous studies on quality score compression proposed solutions that are either lossless or lossy. Thus, if

a user prefers lossy compression, the possibility to extract the original quality scores disappears, and in the

reverse case, the user loses the capability to work with lossy quality scores to reduce the necessary

computing resources. The QScomp scheme introduced in this study is unique in terms of providing lossless

and lossy compression in a single framework by utilizing a hierarchical two-level representation.

In daily practice, we suggest to replace the quality scores in FASTQ files with the proposed first-level

values, and to perform initial explorations with this lightweight presentation. The second-level values could

for example be stored in an archive, and when deeper investigations are required, the original quality scores

could be retrieved.
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