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ABSTRACT

In this work, we derive the rate-distortion function for video coding
using affine global motion compensation. We model the displacement
estimation error during motion estimation and obtain the bit rate after
applying the rate-distortion theory. We assume that the displacement
estimation error is caused by a perturbed affine transformation. The 6
affine transformation parameters are assumed statistically independent,
with each of them having a zero-mean Gaussian distributed estimation
error. Based on that, the joint p.d.f. of the displacement estimation
errors is derived and related to the prediction error. Using the rate-
distortion theory, we calculate the bit rate in dependence of the
perturbation of the affine transformation parameters. Comparing with
a translational motion model in video coding standards like HEVC,
we determine accuracy boundaries for the affine transformation, with
which a gain can be achieved.

Index Terms— Affine Transformations, Global Motion Compen-
sation, GMC, Rate-Distortion Theory, Efficiency Analysis, Aerial
Video Coding, ROI Coding

1. INTRODUCTION

Motion compensated prediction (MCP) is one of the key elements in
modern hybrid video coding standards like Advanced Video coding
(AVC) [1] or High Efficiency Video Coding (HEVC) [2]. MCP was and
is typically performed block-wise for blocks of different sizes, e. g. of
4×4 up to 16×16 pel2 for AVC or 64×64 pel2 for HEVC. The minimum
bit rate of the prediction error of motion compensated prediction in
dependence of the variance of the displacement estimation error was
theoretically analyzed by Girod [3].

For video sequences with distinct global motion, (affine) global
motion compensation (GMC) was introduced in MPEG-4 Advanced
Simple Profile (MPEG-4 ASP) [4]. Since the coding efficiency gains
of GMC stayed behind the expectation for general video coding for
natural scenes without prevalent global motion, GMC was removed in
theMPEG-4 ASP successor AVC again and was replaced by an improved
Motion Vector Prediction (MVP).

Nowadays, new scenarios with distinct globalmotion—like videos
captured fromUnmanned Aerial Vehicles (UAV)/Micro Aerial Vehicles
(MAV) like multicopters—emerge and are also considered in recent
test sets [5, 6, 7]. These video sequences contain higher order global
motion, which cannot accurately be described by a purely translational
motion model, e. g. caused by a tilted camera. To cope with such
motions better, the ITU-T/ISO/IEC Joint Video Exploration Team (JEVT)
(on Future Video Coding) incorporated a (simplified 4-parameter)
affine motion model into their reference software Joint Exploration
Model (JEM) [8] again [9], whereas in contrast to MPEG-4 ASP, it
works on block-level. Affine (as well as homographic) global motion
compensation is also contained in the video codec AV1 [10]. Early

JVET studies based on the initial JEM software (ver. 1.0) on the
common test set [11] (containing no such sequences) show coding
efficiency gains of up to 1.35% (JEM 1.0, configuration Low Delay P
(LDP) main 10) [12] which is the 7th best of 22 of all proposals for
next generation video encoding till then [13]. Larger gains can be
expected for sequences containing more higher order motions like
rotation or zoom [14, 15].

Although affine global motion compensation has a long tradition
in video coding, it has not been theoretically analyzed in the context
of video coding.

In this work, we present an efficiency analysis of affine motion
compensation. We analytically derive the prediction error after
motion compensation in dependence of the affine transform parameter
accuracy in Section 2. Using the rate-distortion theory [16], we derive
the bit rate from the prediction error in Subsection 2.1. Results for a
typical signal-to-noise ratio (SNR) will be presented in the simulations
in Section 3 using the example of aerial video sequences containing
distinct global motion. Section 4 finally concludes the paper.

2. EFFICIENCY ANALYSIS OF AFFINE MOTION
COMPENSATION IN VIDEO CODING

Assuming a full affine motion model with 6 parameters, we can
compute the coordinates x and y in the current (destination) frame from
the affine parameter matrix A =

(
a11 a12 a13
a21 a22 a23

)
and the homogeneous

coordinates (x′, y′, 1) in the source frame
x = a11 ·x

′ + a12 ·y
′ + a13 ; y = a21 ·x

′ + a22 ·y
′ + a23 . (1)

The parameters a13 and a23 describe the translational part of
a motion, whereas the parameters a11,12,21,22 express the rotation,
scaling and shearing. These 4 parameters are further referred as
(purely) “affine parameters”. We assume that each parameter ai j
with i = {1, 2}, j = {1, 2, 3} is perturbed by an independent error
term ei j , caused by inaccurate parameter estimation. Consequently,
the perturbed x̂ coordinate can be expressed as x̂ = â11x′ + â12y

′

+ â13, leading to estimation errors in horizontal and vertical direction
of ∆x and ∆y (in pel)
∆x = x̂ − x = (â11 − a11)︸        ︷︷        ︸

e11

·x′ + (â12 − a12)︸        ︷︷        ︸
e12

·y′ + (â13 − a13)︸        ︷︷        ︸
e13

= e11 · x
′ + e12 · y

′ + e13 (2)
∆y = e21 · x

′ + e22 · y
′ + e23 . (3)

Assuming each error term ei j to be zero-mean Gaussian dis-
tributed leads to the probability density functions (p.d.f.s)

p(ei j ) =
1√

2πσ2
ei j

· exp *.
,
−

e2
i j

2σ2
ei j

+/
-

(4)



with i= {1, 2} and j= {1, 2, 3}.

We assume a Gaussian distribution as the worst-case scenario
since it has the maximal entropy of all distributions with the same vari-
ance. Moreover, the affine parameter estimation is typically based on a
high number of feature point correspondences, with each having an in-
dependently distributed subpel error. Thus, our Gaussian assumption
is additionally justified by the central limit theorem. For statistically
independent variables we get a joint p.d.f. pE11,...,E23 (e11, . . . , e23)
for the random variables E11, . . . , E23 generating the observations
e11, . . . , e23:

pE11,...,E23 (e11, . . . , e23) = p(e11) · . . . · p(e23) . (5)
To convert the p.d.f. pE11,...,E23 (e11, . . . , e23) to the desired p.d.f.

p∆X,∆Y (∆x,∆y) of the resulting pixel errors ∆x, ∆y caused by affine
parameter inaccuracies, we use the transformation theorem for p.d.f.s
([17, 18])

pY1,...,YM
(y1, . . . , yM ) =

∫ ∞

−∞

· · ·

∫ ∞

−∞

pX1,...,XN
(ξ1, . . . , ξN )

·

M∏
m=1

δ
(
ym − gm(ξ1, . . . , ξN )

)
dξ1 . . . dξN , (6)

with δ(·) denoting the Dirac delta function, g1, . . . , gM being
functions y1 = g1(x1, . . . , xN ), . . . , yM = gM (x1, . . . , xN ) and
pY1,...,YM

(y1, . . . , yM ) being the compound p.d.f. With equa-
tions (2) and (3) this yields

p∆X,∆Y
(
∆x,∆y

)
=

∫
�6

pE11,...,E23 (e11, . . . , e23)

· δ
(
∆x − (x′e11 + y′e12 + e13)

)
· δ

(
∆y − (x′e21 + y′e22 + e23)

)
de11 . . . de23 , (7)

with a dependency on the location coordinates x′, y′ in the source
frame.

By using the properties of the delta function, we solve two
integrals

p∆X,∆Y
(
∆x,∆y

)
=

∫
�4

pE11,...,E22 (e11, e12,∆x − x′e11 − y′e12, e21, e22,

∆y − x′e21 − y′e22) de11de12de21de22 . (8)
Exploiting the statistical independence (equation (5)), we separate

the integrands, which leads to
p∆X,∆Y

(
∆x,∆y

)
=

∫
�2

pE11,E12,E13 (e11, e12,∆x − x′e11 − y′e12) de11de12

·

∫
�2

pE21,E22,E23 (e21, e22,∆y−x′e21−y
′e22) de21de22 . (9)

The following derivation is presented only for the x component,
since the y component can be calculated similarly. For ∆x we get
from equation (9) with equation (4)

p∆X (∆x)

=

∫
�2

pE11,E12,E13 (e11, e12,∆x − x′e11 − y′e12) de11de12

=
1√

2πσ2
e11

·
1√

2πσ2
e12

·
1√

2πσ2
e13︸                                        ︷︷                                        ︸

A

·

∞∫
−∞

∞∫
−∞

exp *
,
−

e2
11

2σ2
e11

+
-
· exp *

,
−

e2
12

2σ2
e12

+
-

· exp *
,
−

(∆x − x′e11 − y′e12)2

2σ2
e13

+
-

de11de12

= A ·

∞∫
−∞

∞∫
−∞

exp
(
−

1
2σ2

e11σ
2
e12σ

2
e13

·

(
σ2
e12σ

2
e13 e2

11 + σ
2
e11σ

2
e13 e2

12

+ σ2
e11σ

2
e12

(
∆x − x′e11 − y′e12

)2
))

de11de12 . (10)

Integration results in

p∆X (∆x) =
1√

2π
(
σ2
e11 x′2 + σ2

e12 y
′2 + σ2

e13

)
· exp *.

,
−

∆x2

2 ∗
(
σ2
e11 x′2 + σ2

e12 y
′2 + σ2

e13

) +/
-
. (11)

After calculating the y component accordingly, we obtain the
resulting displacement estimation error

p∆X,∆Y (∆x,∆y)

=
1

2πσ∆xσ∆y
· exp *

,
−
∆x2

2σ2
∆x

+
-
· exp *.

,
−
∆y2

2σ2
∆y

+/
-

(12)

with σ2
∆x = σ

2
e11 x′2 + σ2

e12 y
′2 + σ2

e13 (13)

and σ2
∆y = σ

2
e21 x′2 + σ2

e22 y
′2 + σ2

e23 . (14)

As can be seen, the variances σ2
∆x

and σ2
∆y

depend on the
locations x′, y′.

2.1. Rate-distortion analysis of affine globalmotion compensated
prediction

To derive the bit rate for coding the prediction error in motion
compensated video coding, we use the findings from Girod, who
related the displacement estimation error p∆X,∆Y (∆x,∆y) to the
prediction error ep [3]. Applying the rate-distortion theory [16]
results in the minimum achievable bit rate for encoding the prediction
error. In this subsection we will summarize the derivations from [3].

Given a displacement estimation error p∆X,∆Y (∆x,∆y), we obtain
the power spectral density of the prediction error

See (Λ) = 2 Sss (Λ)
[
1 − Re(P(Λ)

]
+ Θ , (15)

where Sss (Λ) denotes the power spectral density of the video signal
s, Λ being the two-dimensional (2D) spatial frequency vector Λ :=
(ωx, ωy ), P(Λ) being the 2D Fourier transform of the probability
density function (p.d.f.) of the displacement estimation error, and
Θ being a parameter that generates the function R(D) by taking
on all positive real values ([3], equation (28)). The power spectral
density Sss (ωx, ωy ) was determined according to O’Neil and Girod
[19, 3]. There it was assumed that the statistics of the source can be



Fig. 1. Location dependent variance σ2
∆x

of Gaussian distributed
displacement estimation error p.d.f.s for an HD image, σ2

e11 =2.3e−7,
σ2
e12 =4.6e−7 [7, 21] and σ2

e13 =0.04 [3].

represented by the autocorrelation function
Rss (∆x,∆y) = E

[
s(x, y) · s(x − ∆x, y − ∆y)

]
B exp

(
−α

√
∆x2 + ∆y2

)
. (16)

We assume α not to be isotropic and thus replace it by α := √αxαy .
The exponential drop rates αx and αy in x- and y-direction can be
determined as the negative logarithm of the correlations between
horizontally and vertically adjacent pixels αx = − ln (ρx ) and αy =
− ln (ρy ) [19]. For this, the Pearson correlation coefficients ρ(X,Y ) =
cov(X,Y)
σXσY

and similarly ρY with the standard deviations σX , σY and
the covariance cov were determined [20]. The desired power spectral
density Sss (Λ) to be inserted in equation (15) is now the Fourier
transform of equation (16).

Finally, we derive the distortion D as well as the corresponding
minimum transfer rate R(D) from the rate-distortion function for a
given mean-squared error ([3], equations (19–20))

D =
1

4π2

"
Λ

min
[
Θ, Sss (Λ)

]
dΛ , (17)

R(D) =
1

8π2

"
Λ:

(
Sss (Λ)>Θ

and See (Λ)>Θ
)

log2

[
See (Λ)
Θ

]
dΛ bit . (18)

We would like to emphasize that our σ2
∆x

and σ2
∆y

are location
dependent, since they are functions of the source pixel coordinates
x′, y′. Consequently, p∆X,∆Y (∆x,∆y), P(Λ) and See (Λ) are also
location dependent.

Using the idea of generating the rate-distortion function for
translative motion like explained by Girod [3] and our results from
Section 2, we derived the rate-distortion function for affine motion.

3. SIMULATIONS

In our simulations, we evaluate the minimal bit rate for affine global
motion compensated prediction.

As we have seen in the last section, the variances of the displace-
ment estimation error p∆X,∆Y (∆x,∆y) depends on the location in the
image according to equations (13) and (14). Thus, also the resulting
minimum achievable bit rate is location dependent. To obtain the
total bit rate for encoding one frame, we summarize the pel-wise bit
rates afterwards.

Measured variances using an affine motion estimation based
on a KLT feature tracker [22] and RANSAC [23] for the aerial video
sequences from the TAVT data set [7, 21] are given in Table 1, assuming

Table 1. Measured variancesσ2
ei j of affine transformation parameters

of aerial videos from the TAVT data set [7, 21].
σ2
e11 σ2

e12 σ2
e21 σ2

e22 mean
(σ2

e11 ,σ
2
e22 )

mean
(σ2

e12 ,σ
2
e21 )

350m seq. 2.03e−7 6.03e−7 6.59e−7 2.24e−7 2.13e−7 6.31e−7
500m seq. 1.94e−7 5.09e−7 3.63e−7 1.94e−7 1.94e−7 4.35e−7
1000m seq. 1.74e−7 4.05e−7 4.13e−7 2.12e−7 1.93e−7 4.09e−7
1500m seq. 3.19e−7 3.80e−7 3.69e−7 3.46e−7 3.33e−7 3.75e−7
Mean 2.23e−7 4.74e−7 4.51e−7 2.44e−7 2.33e−7 4.63e−7

Table 2. Measured horizontal and vertical correlations between
adjacent pixels for typical test sequences (*: 100 frames each).
Sequence Corr. ρx Corr. ρy
Values from Girod [3] 0.928 0.934
BasketballDrive* (HD) [25] 0.9782 0.9488
BQTerrace* (HD) [25] 0.9680 0.9659
Cactus* (HD) [25] 0.9741 0.9812
Kimono* (HD) [25] 0.9883 0.9900
ParkScene* (HD) [25] 0.9634 0.9518
Mean of CIF seq. Claire, Foreman,Mobile*[24] 0.9402 0.8958
Mean of HD sequences* [25] 0.9744 0.9677

that no non-translational motion is prevalent between two consecutive
frames. From these results it is obvious that the variances σe11 and
σe22 as well as σe12 and σe21 are very similar. This can be explained,
if we consider the rotational part of the affine transform to be caused
by a physical rotation of the camera and the skew-symmetry of a 2D
rotation matrix. Justified by our findings, we assume σe11 =σe22 and
σe12 =σe21 and use the average values (see Table 1). For illustration,
the location dependent variance σ2

∆x
is shown in Fig. 1 for a full HD

resolution image of 1920 × 1080 pel2 and variances like observed in
the TAVT data set [7].

For calculating the power spectral density Sss of the video signal
in equation (15) and the distortion in equation (17), we determine
the exponential drop rates αx and αy of the autocorrelation function
(equation (16)). Wemeasured themean correlation of horizontally and
vertically adjacent pixels of several video sequences. To demonstrate
the effect of different resolutions, we use CIF sequences (352 × 288)
[24] as well as full HD resolution sequences (1920 × 1080) from the
JCT-VC test set [25]. Results can be found in Table 2.

Evaluation of the rate-distortion theory results in minimum re-
quired bit rates for different variances σ2

ei j of Gaussian displacement
estimation error p.d.f.s for a distortion of SNR=30 dB of the affine
transform parameters in Fig. 2. For the simulations we assumed all
affine parameters to be equal (σ2

e11 =σ
2
e12 =σ

2
e21 =σ

2
e22 ) as well as

both translational parameters (σ2
e13 =σ

2
e23 ).

In a second experiment, we calculated the displacement vector
field for several simulated affine transform matrices (N =100). The
affine matrices were assumed to reflect rotation, scaling and shearing
motion by having Gaussian distributed parameters a11, a22 with a
mean value of 1 and variances of σ2

a11 =σ
2
a22 =2.3e−7 and parameters

a12, a21 with a mean value of 0 and variances of σ2
a12 =σ

2
a21 =4.6e−7

(see Table 1). This corresponds to a rotational error of about 0.20
and 0.23 degree, respectively. The location dependent variance
of the displacement vector field is shown in Fig. 3a. The results
fit to our derivations in Section 3, assuming the variances of the
parameters a11, . . . , a22 being the variances of the errors e11, . . . , e22.
The location dependent variance σ2

∆x
are marginally smaller than
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Fig. 2. Minimum required bit rate versus variances σ2
ei j of Gaussian displacement estimation error p.d.f.s for a distortion of SNR=30 dB
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Fig. 3. Simulated location dependent variance σ2
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(a) and bit rate (b)
for Gaussian distributed displacement estimation error p.d.f.s for a HD
image for given variances σ2

e11 = σ
2
e22 =2.3e−7, σ2

e12 = σ
2
e21 =4.6e−7.

the calculated ones in Fig. 1, since in the simulation in Fig. 3a we
assumed the translational error to be zero (σ2

e13 = σ
2
e23 =0).

From the displacement vector field, the location dependent bit
rates are derived according to Section 2. They are shown Fig. 3b.

From our results, we infer:
1. The variance of the displacement estimation error of the purely

affine parameters (σ2
e11/12/21/22 ) has to be magnitudes smaller

than the variance of the translational parameters (σ2
e13/23 ).

This can be considered as realistic (see Table 1), since the

estimation accuracy of the pure affine parameters is not limited
to a specific fractional-pel motion vector accuracy.

2. Assuming a sequence with a specific degree of purely affine
motion (we call it “affinity”), which cannot be described by a
translational motion model, the minimum bit rate is limited
along the affine-variances-axis (directing from the origin to the
left in Fig. 2a). As an example, we assume a HD sequence with
an “affinity” of 1e−7. Then, the minimum bit rate for encoding
the prediction error using a translational motion estimator
with the very small displacement estimation error variance
of σ2

e13 = σ
2
e23 = 0.0052 (which equals 1/4 pel resolution) is

1.034 bit/sample. In contrast to that the minimum bit rate is only
0.039 bit/sample for an accurate affine motion estimator with
σ2
affine=1e−8.

3. From the example we generalize that the minimum required
bit rate is reached, if the motion model covers the real motion
contained in the scene, and if the variance of the estimator is
smaller than the “affinity” contained in the scene.

4. As it is obvious from equations (12)–(14) (and Fig. 1), σ2
∆x

and
σ2
∆y

grow for large image dimensions. For block-based motion
compensation, the “image dimensions” are equal to the block
dimensions. Thus, the gain introduced by affine block-based
motion compensation may be much more insignificant.

4. CONCLUSION
In our paper we derive the minimum required bit rate for encoding the
prediction error of affine (global) motion compensated prediction by
applying the rate-distortion theory. We derived accuracy requirements
for the affine parameter estimation for which an affine motion model
is beneficial in terms of coding efficiency. Scenes, which contain
high degrees of purely affine motion (i. e. rotation, scaling, shearing),
can be described much better. Consequently, the working point
moves towards much smaller bit rates resulting in higher encoding
efficiency. Considering the location dependency of the displacement
estimation error for affine global motion, the employment of affine
motion compensation on block-level remains questionable.
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