Markov Chain Neural Networks

Maren Awiszus · Bodo Rosenhahn

Gottfried Wilhelm Leibniz Universität Hannover

Introduction

Neural Networks: Markov Chains:

- Approximates any function
- Non-linear
 combination of weights through activations
- Deterministic
- Models stochastic process
- Discrete state
 space with
 transition
 probabilities
- Non-deterministic

Our Goal: Allow non-deterministic behavior for Neural Networks in order to model Markov Chains.

Method

Idea: Add an additional input variable which contains a random value. This random value will act as a switch to ensure different outcomes.

For that, the training data must be distributed to ranges for this value during training.

Results

Random Walker

A typical example for a Markov Chain is a Random Walker:

 $\begin{pmatrix}
0 & 1/3 & 1/3 & 1/3 \\
1/3 & 0 & 1/3 & 1/3 \\
1/3 & 1/3 & 0 & 1/3 \\
1/3 & 1/3 & 1/3 & 0
\end{pmatrix}$

Training with random value:

 $(\mathbf{0.5}, 1, 0, 0, 0) \rightarrow (0, 0, 1, 0)$ $(\mathbf{0.2}, 1, 0, 0, 0) \rightarrow (0, 1, 0, 0)$ $(\mathbf{0.8}, 1, 0, 0, 0) \rightarrow (0, 0, 0, 1)$ $(\mathbf{0.9}, 1, 0, 0, 0) \rightarrow (0, 0, 0, 1)$ $(\mathbf{0.1}, 1, 0, 0, 0) \rightarrow (0, 1, 0, 0)$

Text Synthesis

MCNN can generate different continuations for given repetitions. Here an example from Dr. Seuss' "The Cat in the Hat":

Tic-Tac-Toe

With a non-deterministic Neural Net, the same step in a game can have different outcomes:

Two different outcomes with MCNN as circle:

MNIST data completion

While a standard NN will generate a mixture of possible data, MCNN will generate different possible solutions.

Summary and Conclusions

We present a modified Neural Network model which is capable to simulate Markov Chains. We show how to train such a network and demonstrate applications:

- Standard MC models
- Non-deterministic behavior in games
- Data completion and -synthesis

The MCNN:

- uses a random variable as a switch node to produce different outcomes
- is based on a statistical analysis of the training data
- does not require further postprocessing (e.g. sampling from distrib.)
- is straight-forward to implement
- converges faster than a comparable NN (results from Tic-Tac-Toe experiment):

Interested in our other projects? Visit us at:

www.tnt.uni-hannover.de

