
Markov Chain Neural Networks

Maren Awiszus, Bodo Rosenhahn
Institut für Informationsverarbeitung

Leibniz Universität Hannover
www.tnt.uni-hannover.de

Abstract

In this work we present a modified neural network model
which is capable to simulate Markov Chains. We show how
to express and train such a network, how to ensure given
statistical properties reflected in the training data and we
demonstrate several applications where the network pro-
duces non-deterministic outcomes. One example is a ran-
dom walker model, e.g. useful for simulation of Brown-
ian motions or a natural Tic-Tac-Toe network which ensures
non-deterministic game behavior.

1. Introduction
A Markov model is a mathematical model to represent a

randomly changing system under the assumption that future
states only depend on the current state (Markov property). It
is used for predictive modeling or probabilistic forecasting.
A simple model is a Markov chain which models a path
through a graph across states (vertices) with given transi-
tion probabilities on the edges. An example application is a
random walker generated by sampling from a joint distribu-
tion using Markov Chain Monte Carlo. Random walks have
applications in various fields, such as physics, ecology, eco-
nomics, chemistry or biology as they serve as a fundamental
model to record stochastic activity. Besides Random walker
models, various computer science applications require con-
trolled stochastic behavior, e.g. to generate AIs with smart
but non-deterministic patterns for game play or for a more
natural behavior of Chat Bots in Human-Computer Interac-
tion.

Artificial Neural networks are the current state-of-the art
method for solving various computer vision and machine
learning tasks. Due to the increased computational possi-
bilities using GPUs and the availability of big data, top rank
scores in various challenges are obtained with deep neu-
ral networks. Due to their underlying concept of connected
neurons across hidden layers, once trained, a neural network
behaves in a deterministic fashion. Taking an interactive
game or a human-computer chat as examples, it leads (a) to

a foreseeable reaction given a specific game configuration
or (b) always to the same answer for a given comment in a
dialog system. Overall, it results in a non-natural behavior
for human-computer interaction. Indeed, when training a
neural network with different possible (but legal) outcomes,
it leads to slow convergence but still deterministic behavior
when e.g. using a soft-max decision. A common solution to
this issue is to train in a network the distributions of possible
outcomes and then to sample from this. Probabilistic sam-
pling from a regression network requires a post-processing
step in the test phase which is undesired in many applica-
tions.
Contributions

In this paper we address all above aspects and present
a neural network model which is capable to (a) simulate
Markov Chains, (b) we show how to train such a network
with given statistical properties reflected in the training data
and (c) demonstrate several applications where the network
produces random outcomes. Since the stochastic decision
process is integrated by using a random node value as ad-
ditional input, no post-processing (e.g. sampling from a
result-distribution) is necessary.

Experiments are conducted for (a) a probabilistic graph-
ical model (e.g. a 2D and 3D random walker) (b) a natural
Tic-Tac-Toe or Flappy Bird gameplay (c) a text-synthesizer
given an input text database (in our example from a poem
or books like Moby Dick from Herman Melville or Curious
George by H.A. and M. Rey and (d) for image completion
(MNIST) or the synthesis of facial emotions.

2. Foundations and Stochastic Neural Net-
works

This section summarizes the foundations and some state-
of-the art for this work with a focus on Markov Chains and
Neural Networks.

2.1. Graphical Models

A probabilistic graphical model (PGM) is a probabilis-
tic model for which a graph G = (V,E) with given edges

www.tnt.uni-hannover.de

Figure 1. Example Markov Model

E and vertices V is used to model the conditional depen-
dence between random variables [12]. Bayesian networks
or Markov random fields are famous examples with numer-
ous successful applications in computer vision and machine
learning [2, 6, 28, 18]. A stochastic process has the so-
called Markov property if the conditional probability dis-
tribution of future states of the stochastic process only de-
pends on the current state and not on the sequence of events
that preceded it. Thus for S being a discrete set with a
respective discrete sigma algebra the Markov property is
given as

P (Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) =

P (Xn = xn|Xn−1 = xn−1)

Well known are two types of Markov models, (a) the vis-
ible Markov model, and (b) the hidden Markov model or
HMM. In (visible) Markov models (like a Markov chain),
the state is directly visible to the observer, and therefore
the state transition (and sometimes the entrance) probabil-
ities are the only parameters, while in the hidden Markov
model, the state is hidden and the (visible) output depends
on the (non-visible) state. The most likely hidden states
can be recovered e.g. using the famous Viterbi algorithm
[27]. Thus, each state has a probability distribution over
the possible output tokens. In this work we will focus on
Markov Chains, simply given as a Graph G = (V,E, T)
with E ⊆ V × V and Ti,j = p(i|j) for i, j ∈ E. Where
T gives the transition probabilities along the edges between
vertices. Random walks (as considered later) or the Gam-
bler’s ruin problem are famous examples of Markov Chain
processes. For further details, the reference [1] is highly
recommended.

2.2. Neural Networks

A neural network is a collection of connected neurons
[10]. Each (artificial) neuron is defined as a weighted sum
of input values (given as inner product and an added bias
value) passed on to a so-called activation function (e.g. a
sigmoid function or a linear function [19]) to produce an

output (or activation). Combining an input vector with sev-
eral neurons yields a so-called layer and connecting the out-
come of a layer to further layers leads to a neural network.
Such a network is usually optimized by gradient descent on
an output error using backpropagation. In this work we used
the well established stochastic gradient descent method [3].
Due to the huge amount of parameters to optimize, weight
sharing (using e.g. convolutions [9, 20]) or local receptive
fields [26] can drastically avoid overfitting and support the
convergence of the neural network. In this paper we do
not discuss the different variants of neural networks and
their possibilities for optimization, autoencoders [17], in-
cremental learning [14, 15] or data management [4]. We
only want to state, that neural networks are commonly used
for competing in different benchmarks with remarkable per-
formance [13, 21, 11]. For this work it is only important to
clarify that a neural network is a deterministic function and
in its nature not suited for modeling Markov chains.

2.3. Stochastic and probabilistic neural networks

The most similar approach to our proposed contribution
are so-called stochastic neural networks [25]. They are a
type of artificial neural networks where random variations
are built into the network. This can be realized by modify-
ing the involved neurons with stochastic transfer functions,
or by giving them stochastic weights. These modifications
can be useful for optimization problems, since the random
fluctuations can help to overcome local minima [8]. In a
similar fashion, noisy activation functions have been pro-
posed [7]. To our experience, the stochastic weights or ac-
tivations can lead to unpredictable network behavior, since
a slight change in an early layer can propagate through the
whole network. Therefore, it is nearly impossible to en-
sure desired statistical properties of such networks, unless
they are explicitly modeled [24]. A probabilistic neural
network (PNN) is a special feed-forward neural network
[22, 5]. Herefore, the probability distribution of each pos-
sible class is approximated by a distribution, e.g. using a
Parzen window and a non-parametric function. Then for a
new input vector the PDF for each possible class is evalu-
ated and Bayes rule is applied for the final decision. The al-
located class is the class of the highest posterior probability.
The resulting network consists of four layers, namely the
input layer, hidden layer, pattern layer and the output layer.
Since the pattern layer is usually representing the likelihood
for a specific class, sampling from this layer could be done
to produce random outcomes. This again leads to an ex-
tra analysis step during testing which we will avoid in this
paper. Instead, we shift the information of the outcome dis-
tribution into the training phase to sample solutions directly
from the network. This will be achieved by an extra random
input value for the first layer.

Figure 2. Markov Chain Neural Network

3. Markov Chain Neural Network

In the following we describe the basic idea for our pro-
posed non-deterministic MC neural network, suitable to
simulate transitions in graphical models. Similar to the pre-
vious section we start with a Graph G = (V,E, T) with V
a set of states, E ⊆ V × V and a matrix with transition
probabilities T = V × V with

∑|V |
i T (i, j) = 1. A simple

example is shown in Figure 1 with the states 1 . . . 4 and the
respective transition matrix.

This simple example can be used to model e.g. a random
walker with 4 oriented steps (left, right, up, down) with the
property that the walker is changing the orientation with ev-
ery step. Given a graphical model and an initial state (e.g.
1 = (1, 0, 0, 0)T representing the first node the next states
are 2,3,4 with a likelihood of 1

3 . An obviously naive op-
tion to train a network is to define a four-dimensional (bi-
nary) input and output vector, to generate training examples
while traversing through the network and to use this to train
a neural net. Unfortunately, a neural net behaves in a de-
terministic way, so that for a given input, the outcome of
a network is always the same. Alternatively, the transition
probability of [0, 1

3 ,
1
3 ,

1
3]

T can be trained and then with a
sampling on the target distribution, a random decision can
be made. To allow for non-deterministic behavior and to
avoid the sampling from a target distribution, the goal is
to transfer the predefined statistical behavior of a graphical
model to a neural net. To achieve this, we propose the exten-
sion of the input data with an additional value containing a
random number r ∈ [0, 1] and a special learning paradigm,
described in the following.

The topology is visualized in Fig. 2. The random num-
ber is connected to the neural net as additional input value
during training and testing. It can be implemented by sim-
ply using a five-dimensional input vector (r, 1, 0, 0, 0) fol-
lowing the above example, or by using an additional ran-
dom bias value, with a random value for a test input. The
key idea is that the random value steers the output vector
following the predefined statistical behavior: For a given
training set D with input vector xi and output vector (or

value) yi,

D = {(xi, yi)}ni=1

we approximate p(yi|X = xi) as a (in general multivariate)
discrete probability distribution. Thus for yi ∈ 1 . . . c, and
Y = {y1 . . . yc} and a given input vector X ,

c∑
i=1

p(yi|X) = 1

E.g. assuming the transition probabilities from Figure 1,
it implies the row-sum to be one. From the training data it is
simply approximated as the relative frequency (the empiri-
cal probability),

p(yi|xi) =
‖ {(x = xi, y = yi) ∈ D}‖
‖ {(x = xi, y ∈ Y) ∈ D}‖

Now, it is possible to generate from such a histogram an
arbitrary number of input/output pairs. They reflect a pre-
defined reaction, given a random value as additional input
node so that the distribution of possible output vectors cor-
responds to the distribution of output vectors in the training
data. Thus, we augment the input data vectors with an ad-
ditional random value and use these random values to draw
a distribution of possible outputs.

Similar to importance sampling [23], we accumulate for
each possible input state the corresponding cumulative fre-
quency, e.g. for our simple random walker model and start
node (1, 0, 0, 0)T we gain [0, 1

3 ,
2
3 , 1]. Then we generate

new training data by drawing a random number r and by
identifying the appropriate decision from the accumulated
interval. The following example shows some example train-
ing data which are generated from this strategy:

Input Output
(0.5, 1, 0, 0, 0) → (0, 0, 1, 0)
(0.2, 1, 0, 0, 0) → (0, 1, 0, 0)
(0.8, 1, 0, 0, 0) → (0, 0, 0, 1)
(0.9, 1, 0, 0, 0) → (0, 0, 0, 1)
(0.1, 1, 0, 0, 0) → (0, 1, 0, 0)

. . .
Figure 3 shows some example random walks which have

been generated from a neural net by feeding the output as
new input vector into the net. The images show the realiza-
tion of 20.000 steps with (1, 0, 0, 0) as start node. The state
probability converges to 1

4 , thus each state has the same
visiting expectation likelihood. Simply speaking, the ad-
ditional random value acts as a switch which defines in a
predefined manner the respective outcome. E.g. for a start
node (1, 0, 0, 0) and a random value between [0, 1

3] the out-
come is (0, 1, 0, 0), whereas for a random value between
] 13 ,

2
3] the outcome is (0, 0, 1, 0), etc. Figure 4 shows exam-

ples of a neural net which generates 3D random walks.

Figure 3. Realizations of different 2D random walks generated
with a Markov Chain Neural Network

Figure 4. Realizations of different 3D random walks generated
with a Markov Chain Neural Network

4. Experiments
Starting from this toy example, we now demonstrate fur-

ther examples on how to use the MC-neural network.

4.1. Tic-Tac-Toe

The famous game is a paper-and-pencil game for two
players, X (black) and O (white). They take turns by mark-
ing the spaces in a 3 × 3 grid. The player who succeeds in
placing three own marks in a horizontal, vertical, or diago-
nal row wins the game. Due to its simplicity, there are only
26,830 possible games up to rotations and reflections, thus
it is a nice example for a neural network to learn.

For the generation of training data we implemented a
non-stupid rule-based player which follows the following
steps

1. Can I win ?

2. Do I have to defend ?

Figure 5. Distribution of possible reactions during a Tic-Tac-Toe
game. A high gray value (towards white) indicates a high prob-
ability whereas a low gray value (towards black) indicates a low
probability. The selected field has the likelihood 0 since it can
not be selected anymore. Left : Ground truth (the statistics of the
training data reactions when (top) the middle place has been se-
lected or (b) when the upper left corner has been selected. Right:
Distribution of reactions of our trained MC network during 1000
artificial games with the selected middle or upper left space as
starting point. As can be seen, the neural network produces reac-
tions which are close to the distribution of reactions in the training
data.

Figure 6. Performance over several Epochs of training. After each
training epoch, 1000 games between the MC neural network (lines
with dots) and the rule-based player (solid lines) are simulated. It
results in a ratio of win (black), pair (blue) and lost (red) games.
The diagram shows, that the Markov Chain neural network con-
verges faster and yields a slightly better playing performance. (The
Figure is best viewed in color)

3. Can I make a move to build a fork ?

4. Make a random move

We simulated several thousand games and use the reac-
tions of the winner during the games as output and as input
the configuration of the preceding step. Thus, the input and
output configuration is a nine-dimensional vector with val-
ues [−1, 0, 1]. The value −1 represents the black player X ,
0 is an empty field and 1 is the white player O. As neural

Figure 7. Two example games of our proposed neural network.
The neural network (white) starts, produces different start configu-
rations at the first move and is later able to generate a fork scenario
so that the black player (the rule based player) looses the game.

Figure 8. A neural network playing Flappy Bird perfectly.

network we decided for a simple shallow fully connected
structure with [10 : 80 : 30 : 9] layers, where the fist layer
of dimension 10 is the configuration and the additional ran-
dom value and 9 is the outcome configuration.

From the games, it is now easy to determine from the
training data the amount of possible reactions which have
some usefulness for the neural net. E.g. when consider-
ing Figure 5, the upper left image shows the distribution of
possible reactions to a start configuration of player X(black)
who has selected the middle field. Thus it can be seen, that
the best option is to react by using a corner field (bright
value). In the lower left example, player X(black) selected
the upper left corner and the worst reaction is to select a di-
rect neighbor (right, bottom) field. Indeed, if a user selects
one of these fields, there is a 100% winning strategy for the
black player X.

If player X(black) starts with a middle field, due to the
symmetry properties it is not important with which corner
player O (white) reacts, so that all remaining fields have
a certain likelihood for a reaction, which can be estimated
from the training data and embedded into the MC neural
net, as described in the previous section. The right image
of Figure 5 shows the distribution of reactions after 1000
trials with a predefined start configuration which is the X
(black) player selecting the middle field (top) or upper left
field (bottom). It is clearly visible, that the distribution is
very close to the distribution of the training data. Thus, a

useful natural reaction pattern is trained and the network
can play in a non-deterministic but appropriate fashion. We
tested the neural network with several players and all con-
firmed the natural gameplay of our network. One reason is
also, that there is a probability for the network to produce
non-optimal and variable moves.

Figure 6 demonstrates the performance of the trained
MC neural network over training several epochs in com-
parison to a classical network. The MC network converges
faster. In the authors opinion one reason is, that the same in-
put in the training data can lead to different outputs. Thus,
the gradients can start to contradict each other yielding to
a slower convergence. For the MC network, the additional
random number allows for a suited separation of the behav-
iors and thus a faster and better convergence and game play.

Figure 7 shows two games between the Markov Chain
neural network and the rule based player. The neural net-
work starts (white) and already as first move, different con-
figurations are produced by the network. In the remainder
of the game, the network produces a fork scenario, so that
the rule based player looses the game.

4.2. Reinforcement Learning

This paradigm can also be applied in the context of re-
inforcement learning to balance possible reactions to their
overall gain. In Q-learning an agent transitions between
states, executes actions and gains a reward to be optimized.
The non deterministic behavior of a Markov chain neural
network can be easily integrated in an agent to explore the
state space of a game. The rewards are correlated to the im-
pact of an action, so that more successful activities appear
more often in the training data and are thus more likely to be
selected. Figure 8 shows three screen shots of a neural net-
work which perfectly plays the game Flappy Bird, in which
the inputs consist of the proposed random value, the posi-
tion of the bird, the position of the pipes and the distance
between the bird and the pipes.

4.3. Text synthesis

The next example is text synthesis. Based on given input
letters (we use 7 letters as input, which are encoded as their
ASCII-value), the network predicts a new letter to continue
the text. This allows the synthesis of new text blocks, e.g.
useful for artificial chat-bots. In this experiment we use the
poem The cat with the hat by Dr. Seuss. It has a length of
1620 words and 7086 characters. Given 7 input characters,
it is now possible to determine the statistics for the follow
up character and to train the Markov Chain neural network.
Whereas the input is an 8-dimensional vector containing the
Markov Chain and the ASCII-values of the characters, the
output is a 256 dimensional decision vector with binary val-
ues, indicating the decision as ASCII value.

After training the network, it is possible to start with a

Figure 9. Left: Input Text, fragment from The cat with the hat (Dr. Seuss). Right: Synthesized text with Markov property along the words.

fragment and then to continue the synthesis of the text. Fig-
ure 9 shows on the left an input text fragment of the network
and in the right some synthesized sentences. The figure also
indicates repetitions of characters in the text, so that it is
easy to verify how the network jumps through the input text
while synthesizing the text.

We also trained a text-synthesizer from books like Moby
Dick or Curious George. Whereas the first contains 211.000
words which are arranged in a 211.000 dimensional dictio-
nary vector, the second one only contains 950 words yield-
ing a much smaller dictionary. Here the intention is not
to learn successive letters, but consecutive words, directly
from the local co-occurrence of the surrounding words.
Thus, for training we look up for each position in the text a
predefined amount of consecutive words (e.g. 6). E.g. from
the sentence There now is your insular city of the Manhat-
toes, belted round by wharves as Indian isles by coral reefs-
commerce surrounds it with her surf. We select belted round
by wharves as Indian and lookup their respective dictionary
entry numbers, e.g. [120, 745, 823, 774890, 132]. To ac-
count for the order of the words, the input training vector
is zeros and the values of the above positions are initial-
ized with 1

7−i . Thus, the words are ordered with respect to
the positions by using the weight in the input vector. Thus,
words close to the next words have a higher weight and
therefore a higher importance for prediction. For both ex-
ample books, after training of a 5 layer neural network, the
network was able to produce realistic text fragments. An
example produced by the network is The man took off the
bag. George sat on a little boat, and a sailor rowed them
both across the water to a big Zoo in a prison.

Even though the generated text appears partially useful,
the overall generated sentences are not very smart since the
global context of the text is ignored.

4.4. Image completion

In the next example we use the MNIST database [16] and
train a network which uses as input the upper left quarter of
an image and as output the complete image. Thus, the goal
of the network is to fill in the missing information in the im-
age. As the solution to the input is ambiguous, a classical
neural network has severe problems to find an appropriate
mapping and thus, ends up in a mixture of possible solu-
tions, see Figure 10. In contrast, our MC network allows
for a clear separation of possible solutions, so that several
possible answers are generated, see Figure 11.

For this experiment we used a simple shallow network
with 500 hidden units.

In the following example we use the jaffee-database as
data source. The database consists of several frontal face
images of actors performing different emotions (anger, dis-
gust, fear, happy, surprise, neutral).

Our application uses an image part as input and our MC
neural network to generate a similar face with a different
emotion. For this we first classify the ID of the person and
use this input value, together with the random value as in-
put for our network. If we use an equal distribution for the
emotion changes, different random emotions are generated
independently from the current emotion. Some examples
are shown in the right of Figure 12.

Figure 10. Left: Input Image fragment. Right: Outcome of a de-
terministic Neural network. As can be seen, mixtures of possible
solutions are generated.

Figure 11. Left: Input Image fragment. Right: Different generated
solutions from the proposed Markov Chain network.

Figure 12. Left: Input Face part (used for identification). Right:
Synthesized faces with Markov property along emotions.

5. Summary and Discussion

In this work we present a modified neural network model
which is capable to simulate Markov Chains. We show how
to train such a network with given statistical properties re-
flected in the training data and demonstrate several appli-
cations where the network produces random outcomes for
generating a random walker model or a natural Tic-Tac-Toe
gameplay. The key idea is to add an additional input node
with a random variable which allows the network to use it as

a switch node to produce different outcomes. Even though
the network is acting in a deterministic fashion, due to the
random input it produces random output with guaranteed
statistical properties reflected in the training data. The MC
network is based on a statistical analysis of the training data
and does not require further post-processing (e.g. sampling
from a distribution of solutions). The network is straight
forward to implement. It allows natural game play, ambigu-
ous image completion or a more natural chat avatar as pos-
sible application.

References
[1] C. M. Bishop. Pattern Recognition and Ma-

chine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006. 2

[2] A. Blake, P. Kohli, and C. Rother. Markov Random
Fields for Vision and Image Processing. The MIT
Press, 2011. 2

[3] L. Bottou. Stochastic Learning, pages 146–168.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.
2

[4] P. S. Crowther and R. J. Cox. A method for optimal di-
vision of data sets for use in neural networks. Springer
Berlin / Heidelberg, Lecture Notes in Computer Sci-
ence, 3684:1–7, 2005. 2

[5] H. Farhidzadeh. Probabilistic neural network
training for semi-supervised classifiers. CoRR,
abs/1509.01271, 2015. 2

[6] L. Fei-Fei, R. Fergus, and P. Perona. Learning gen-
erative visual models from few training examples: An
incremental bayesian approach tested on 101 object
categories. Comput. Vis. Image Underst., 106(1):59–
70, Apr. 2007. 2

[7] C. Gulcehre, M. Moczulski, M. Denil, and Y. Bengio.
Noisy activation functions. In Proceedings of the 33rd
International Conference on International Conference
on Machine Learning - Volume 48, ICML’16, pages
3059–3068. JMLR.org, 2016. 2

[8] C. O. Justin Bayer. Learning stochastic recurrent net-
works. arXiv:1411.7610, 2015. 2

[9] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gre-
gor, M. Mathieu, and Y. LeCun. Learning convo-
lutional feature hierachies for visual recognition. In
Advances in Neural Information Processing Systems
(NIPS 2010), volume 23, 2010. 2

[10] M. Kearns and U. V. Vazirani. An introduction to com-
putational learning theory. MIT Press, 1994. 2

[11] F. Kluger, H. Ackermann, M. Y. Yang, and B. Rosen-
hahn. Deep learning for vanishing point detection us-

ing an inverse gnomonic projection. In 39th German
Conference on Pattern Recognition, Sept. 2017. 2

[12] D. Koller and N. Friedman. Probabilistic Graphi-
cal Models: Principles and Techniques - Adaptive
Computation and Machine Learning. The MIT Press,
2009. 2

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 25, pages 1097–1105.
Curran Associates, Inc., 2012. 2

[14] A. Kuznetsova, S. J. Hwang, B. Rosenhahn, and L. Si-
gal. Expanding object detector’s horizon: Incremen-
tal learning framework for object detection in videos.
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015. 2

[15] A. Kuznetsova, S. J. Hwang, B. Rosenhahn, and L. Si-
gal. Exploiting view-specific appearance similarities
across classes for zero-shot pose prediction: A met-
ric learning approach. Conference on Artificial Intel-
ligence (AAAI), Feb. 2016. 2

[16] Y. LeCun and C. Cortes. MNIST handwritten digit
database. 6

[17] P. Mirowski, M. Ranzato, and Y. LeCun. Dynamic
auto-encoders for semantic indexing. In Proceedings
of the NIPS 2010 Workshop on Deep Learning, 2010.
2

[18] O. Müller and B. Rosenhahn. Global consistency pri-
ors for joint part-based object tracking and image seg-
mentation. In IEEE Winter Conference on Applica-
tions of Computer Vision (WACV), Mar. 2017. 2

[19] T. Raiko, H. Valpola, and Y. LeCun. Deep learning
made easier by linear transformations in perceptrons.
In Conference on AI and Statistics (JMLR W&CP),
volume 22, pages 924–932, 2012. 2

[20] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son. Cnn features off-the-shelf: An astounding base-
line for recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops;
DeepVision workshop, 2014. 2

[21] J. Redmon and A. Farhadi. YOLO9000: better, faster,
stronger. CoRR, abs/1612.08242, 2016. 2

[22] D. F. Specht. Probabilistic neural networks. Neural
Netw., 3(1):109–118, Jan. 1990. 2

[23] R. Srinivasan. Importance Sampling: Applications in
Communications and Detection. Engineering online
library. Springer Berlin Heidelberg, 2002. 3

[24] Y. Tang and R. R. Salakhutdinov. Learning stochas-
tic feedforward neural networks. In C. J. C. Burges,

L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information
Processing Systems 26, pages 530–538. Curran Asso-
ciates, Inc., 2013. 2

[25] C. Turchetti. Stochastic Models of Neural Networks.
IOS Press, Inc., 2004. 2

[26] D. Turcsany, A. Bargiela, and T. Maul. Local recep-
tive field constrained deep networks. Information Sci-
ences, 349–350:229–247, 2016. 2

[27] A. Viterbi. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.
IEEE Transactions on Information Theory, 14:260–
269, 1967. 2

[28] L. Zhu, Y. Chen, and A. Yuille. Unsupervised learn-
ing of probabilistic grammar-markov models for ob-
ject categories. IEEE Trans. Pattern Anal. Mach. In-
tell., 31(1):114–128, Jan. 2009. 2

