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Abstract— In recent years, data-driven methods have shown
great success for extracting information about the infrastruc-
ture in urban areas. These algorithms are usually trained on
large datasets consisting of thousands or millions of labeled
training examples. While large datasets have been published
regarding cars, for cyclists very few labeled data is available
although appearance, point of view, and positioning of even
relevant objects differ. Unfortunately, labeling data is costly
and requires a huge amount of work.

In this paper, we thus address the problem of learning
with very few labels. The aim is to recognize particular traffic
signs in crowdsourced data to collect information which is of
interest to cyclists. We propose a system for object recognition
that is trained with only 15 examples per class on average.
To achieve this, we combine the advantages of convolutional
neural networks and random forests to learn a patch-wise
classifier. In the next step, we map the random forest to a neural
network and transform the classifier to a fully convolutional
network. Thereby, the processing of full images is significantly
accelerated and bounding boxes can be predicted. Finally, we
integrate data of the Global Positioning System (GPS) to localize
the predictions on the map. In comparison to Faster R-CNN and
other networks for object recognition or algorithms for transfer
learning, we considerably reduce the required amount of labeled
data. We demonstrate good performance on the recognition of
traffic signs for cyclists as well as their localization in maps.

I. INTRODUCTION

Cycling as a mode of transport has attracted growing inter-

est. Cities are transforming urban transportation to improve

their infrastructure. While current development shows more

and more infrastructure improvements, road conditions can

vary greatly. Cyclists are frequently confronted with chal-

lenges such as absence of bicycle lanes, being overlooked by

cars, or bad roads. Arising safety concerns represent a barrier

for using bicycles. Thus, recommending fast and safe routes

for cyclists has great potential in terms of environmental and

mobility aspects. This, in turn, requires detailed information

about roads and traffic regulations.

For cars, precise information has become available.

Google, for example, started the Google Street View project

in which data is captured by many cars. These are equipped

with stereo cameras which already offer a good 3D estima-

tion in a certain range, lidar, and other sensors. Additionally

the cars provide computational power as well as power
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Fig. 1: Real-world data has great potential to provide traffic

information that is of interest to cyclists. For example,

roads that are prohibited for cars but free for cyclists (left),

bicycle lines in parks (middle), or bicycle boulevards which

are optimized for cyclists (right). All three examples are

recognized by our system.

supply. In research, popular datasets like GTSRB [1], KITTI

[2], and Cityscapes [3] have been published.

In recent years, users are increasingly involved in the

data collection. Crowdsourcing data enables to create large

amount of real-world datasets. For example, the smart phone

app Waze collects data such as GPS-position and speed from

multiple users to predict traffic jams. OpenStreetMap aims

to build a freely available map of the world to which users

can easily contribute.

Machine learning techniques have shown great success

for analyzing this data. While large amounts of data can

be quickly collected, supervised learning further requires

labeled data. Labeling data, unfortunately, is usually very

time-consuming and literally expensive.

Our motivation is to collect information which is of

interest to cyclists. Analyzing street data for cyclists cannot

be straightforwardly done by using data captured for cars

due to different perspectives, different street signs, and routes

prohibited for cars but not for bicycles, as shown in Fig. 1.

For collecting real-world data, we involve users by using

smart phones that are attached to their bicycles. Compared

to other systems like for example Google Street View our

recording system consists of a single consumer camera and

can only rely on a limited power supply as well as little

computational power. On the other hand, our system has

very low hardware costs and is highly scalable so that



crowdsourcing becomes possible.

Although capturing data becomes easy with this system,

generating labels is still very expensive. Thus, in this paper

we further address the problem of learning with extremely

little data to recognize traffic signs relevant for cyclists. We

combine multiple machine learning techniques to create a

system for object recognition. Convolutional neural networks

(CNN) have shown to learn strong feature representations.

On the other hand, random forests (RF) achieve very good

results in regression and classification tasks even when few

data is available. To combine both advantages we generate

a feature extractor using a CNN and train a random forest

based on the features. We map the random forest to a

neural network and transform the full pipeline into a fully

convolutional network. Thus, due to the shared features, the

processing of full images is significantly accelerated. The

resulting probability map is used to perform object detection.

In a next step, we integrate information of a GPS-sensor to

localize the detections on the map.

To summarize, our contributions are:

• We propose a pipeline for training a traffic sign recog-

nition system based on convolutional neural networks,

using only 15 training samples per class on average.

• We integrate GPS-information to localize the predicted

traffic signs on the map.

• We collected a dataset of images of street scenes from

the perspective of cyclists by crowdsourcing. The im-

ages are captured using a mobile device that is attached

to the bicycle.

• Our recorded data is preprocessed directly on the mobile

device. Meta data is used to keep interesting images to

minimize redundancy and the amount of data.

• We publish the training and test dataset for traffic sign

detection1.

II. RELATED WORK

In recent years, convolutional neural networks have be-

come the dominant approach for various tasks including

classification [4], object recognition, and scene analysis [5],

[6]. Girshick et al. [7] proposed a multi-stage pipeline

called Regions with Convolutional Neural Networks (R-

CNN) for the classification of region proposals to detect

objects. It achieves good results but the pipeline is less

efficient because features of each region proposal need be

computed repeatedly. In SPP-net [8], this problem has been

addressed by introducing a pooling strategy to calculate the

feature map only once and generate features in arbitrary

regions. Fast R-CNN [9] further improves the speed and

accuracy by combining multiple stages. A drawback of

these algorithms is their large dependence on the region

proposal method. Faster R-CNN [10] combines the region

proposal mechanism and a CNN classifier within a single

network by introducing a Region Proposal Network. Due to

shared convolutions, region proposals are generated at nearly

no extra cost. Other networks such as SSD [11] directly

1www.tnt.uni-hannover.de/˜reinders/

regress bounding boxes without generating object proposals

in an end-to-end network. YOLO [12] is a similar approach

which is extremely fast but comes with some compromise in

detection accuracy. Generally, these networks perform very

well. However, they typically consist of millions of variables

and for estimating those, a large amount of labeled data is

required for training.

Feature learning and transferring techniques have been

applied to reduce the required amount of labeled data [13].

The problem of insufficient training data has also been ad-

dressed by other works such as [14] and [15]. Moysset et al.

[14] proposed a new model that predicts the bounding boxes

directly. Wagner et al. [15] compared unsupervised feature

learning methods and demonstrated performance boosts by

pre-training. Although transfer learning techniques are ap-

plied, the networks still have a large number of variables for

fine-tuning.

A different approach is the combination of random forests

and neural networks. Deep Neural Decision Forests [16]

unifies both in a single system that is trained end-to-end.

Sethi [17] and Welbl [18] presented a mapping of random

forests to neural networks. The mapping can be used for

several applications. Massiceti et al. [19] demonstrated the

application for camera localization. Richmond et al. [20]

explored the mapping of stacked RFs to CNNs and an ap-

proximate mapping back to perform semantic segmentation.

III. TRAFFIC SIGN RECOGNITION

In this section, we present a system for recognizing traffic

signs. To overcome the problem of lack of data, we first build

a classifier that predicts the class probabilities of a single

image patch. This is done in two steps. First, we train a CNN

on a different dataset where large amount of data is available.

Afterwards we use the generated features, extract the feature

vectors, and train a random forest. The resulting classifier

can be used to perform patch-wise prediction and to build

a probability map for a given full image. Subsequently, all

traffic signs are extracted and the recognition system outputs

the class as well as the corresponding bounding box.

Finally, the processing of full images is accelerated. By

mapping the random forest to a neural network, it becomes

possible to combine feature generation and classification.

Afterwards we transform the neural network to a fully

convolutional network.

A. Feature Learning

We learn features by training a convolutional neural net-

work CNNF. The patch size is 32 × 32. We adopt the

network architecture of Springenberg et. al [21]. To reduce

the memory requirements, we decrease the number of filters

in conv1 to 32, in conv2 to 64, and in conv3 to 128.

Because we have only few labeled data available, we

train the network on the larger dataset GTSRB [1]. After

training, the resulting network CNNF can be used to generate

feature vectors by passing an input image to the network

and performing a forward pass. The feature vectors can be

extracted from the last convolutional layer. In our network

www.tnt.uni-hannover.de/~reinders/
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Fig. 2: A decision tree (left) and the mapped neural network

(right). Each split node in the tree – indicated as circle –

creates a neuron in the first hidden layer which evaluates the

split rule. Each leaf node – indicated as rectangle – creates

a neuron in the second hidden layer which determines the

leaf membership. For example, a routing to leaf node 11

involves the split nodes (0, 8, 9). The relevant connections

for the corresponding calculation in the neural network are

highlighted.

this corresponds to the third convolutional layer, denoted by

CNNF
relu3(x).

B. Random Forest Classification

Usually, neural networks perform very good in classifi-

cation. However, if the data is limited, the large amount of

parameters to be trained causes overfitting. Random forests

[22] have shown to be robust classifiers even if few data

is available. A random forest consists of multiple decision

trees. Each decision tree uses a randomly selected subset

of features and training data. The output is calculated by

averaging the individual decision tree predictions.

After creating a feature generator, we calculate the feature

vector f (i) = CNNF
relu3(x

(i)) for every input vector x(i).

Based on the feature vectors we train a random forest that

predicts the target values y(i). By combining the feature

generator CNNF and the random forest, we construct a

classifier that predicts the class probabilities for an image

patch. This classifier can be used to process a full input

image patch-wisely. Calculating the class probabilities for

each image patch produces an output probability map.

C. RF to NN Mapping

Here, we present a method for mapping random forests to

two-hidden-layer neural networks introduced by Sethi [17]

and Welbl [18]. The mapping is illustrated in Fig. 2.

A decision tree consists of split nodes N Split and leaf nodes

N Leaf. Each split node s ∈ N Split performs a split decision

and routes a data sample x to the left child node cl(s) or

to the right child node cr(s). When using axis-aligned split

decisions the split rule is based on a single split feature f(s)
and a threshold value θ(s):

x ∈ cl(s) ⇐⇒ xf(s) < θ(s) (1)

x ∈ cr(s) ⇐⇒ xf(s) ≥ θ(s). (2)

All leaf nodes l ∈ N Leaf store votes for the classes yl =
(yl1, . . . , y

l
C), where C is the number of classes. For each

leaf a unique path P(l) = (s0, . . . , sd) from root node s0
to leaf l over a sequence of split nodes {si}

d
i=0 exists, with

l ⊆ sd ⊆ · · · ⊆ s0. By evaluating the split rules for each

split node along the path P(l) the leaf membership can be

expressed as:

x ∈ l ⇐⇒ ∀s ∈ P(l) :

{

xf(s) < θ(s) if l ∈ cl(s)

xf(s) ≥ θ(s) if l ∈ cr(s)
(3)

First Hidden Layer. The first hidden layer computes all

split decisions. It is constructed by creating one neuron H1(s)
per split node evaluating the split decision xf(s) ≥ θ(s).
The activation output of the neuron should approximate the

following function:

a(H1(s)) =

{

−1, if xf(s) < θ(s)

+1, if xf(s) ≥ θ(s)
(4)

where −1 encodes a routing to the left child node and

+1 a routing to the right child node. Therefor the f(s)th

neuron of the input layer is connected to H1(s) with weight

wf(s),H1(s) = c01, where c01 is a constant. The bias of H1(s)
is set to bH1(s) = −c01 · θ(s). All other weights are zero. As

a result, the neuron H1(s) calculates the weighted input

c01 · xf(s) − c01 · θ(s) (5)

which is smaller than zero when xf(s) < θ(s) is fulfilled

and greater or equal to zero otherwise. We use tanh(·) as

activation.

Second Hidden Layer. The second hidden layer combines

the split decisions from layer H1 to indicate the leaf mem-

bership x ∈ l. One leaf neuron H2(l) is created per leaf

node. It is connected to all split neurons H1(s) along the

path s ∈ P(l) as follows

wH1(s),H2(l) =

{

−c12 if l ∈ cl(s)

+c12 if l ∈ cr(s)
, (6)

where c12 is a constant. The weights are sign matched

according to the routing directions, i.e. negative when l is

in the left subtree from s and positive otherwise. Thus, the

activation of H2(l) is maximized when all split decisions

routing to l are satisfied. All other weights are zero.

To encode the leaf to which a data sample x is routed,

the bias is set to bH2(l) = −c12 · (|P(l)| − 1) so that the

weighted output of neuron H2(l) will be greater than zero

when all split decisions along the path are satisfied and less

than zero otherwise. By using the activation function a(·) =
sigmoid(·), the active neuron H2(l) with x ∈ l will map close

to 1 and all other neurons close to 0.

Output Layer. The output layer contains one neuron

H3(c) for each class and is fully-connected to the previous

layer H2. Each neuron H2(l) indicates whether x ∈ l. The

corresponding leaf node l in the decision tree stores the class

votes ylc for each class c. To transfer the voting system, the

weights are set proportional to the class votes:

wH2(l),H3(c) = c23 · y
l
c, (7)



(a) Class 237 (b) Class 244.1 (c) Class 241

Fig. 3: The subject from class 237 (a) occurs similarly

in class 244.1 (b) and class 241 (c). Due to very few

training examples and the consequent low variability, parts

of traffic signs are recognized. We utilize this information

and integrate the recognition of parts into the bounding box

prediction.

where c23 is a scaling constant to normalize the votes as

explained in the following section. All biases are set to zero.

Random Forest. Extending the mapping to random forests

with T decision trees is simply done by mapping each de-

cision tree and concatenating the neurons of the constructed

neural networks for each layer. The neurons for each class

in the output layer are created only once. They are fully-

connected to the previous layer and by setting the constant

c23 to 1/T the outputs of all trees is averaged. We denote the

resulting neural network as NNRF. It should be noted that the

memory size of the mapped neural network is linear to the

total number of split and leaf nodes. A possible network

splitting strategy for very large random forests has been

presented by Massiceti et al. [19].

D. Fully Convolutional Network

Mapping the random forest to a neural network allows

to join the feature generator and the classifier. Therefore

we remove the classification layers from CNNF, i.e. all

layers after relu3, and append all layers from NNRF. The

constructed network CNNF+RF processes an image patch and

outputs the class probabilities.

The convolutional neural network CNNF+RF is converted

to a fully convolutional network CNNFCN by converting

the fully-connected layers into convolutional layers, similar

as [23]. The fully convolutional network operates on input

images of any size and produces corresponding (possibly

scaled) output maps. Compared to patch-wise processing,

the classifier is naturally slided over the image evaluating

the class probabilities at any position. At the same time the

features are shared so that features in overlapping patches

can be reused. This decreases the amount of computation

and significantly accelerates the processing of full images.

E. Bounding Box Prediction

The constructed fully convolutional network processes a

color image I ∈ R
W×H×3 of size W ×H with three color

channels and produces an output O = CNNFCN(I) with O ∈
R

W ′
×H′

×C . The output consists of C-dimensional vectors at

any position which indicate the probabilities for each class.

Due to stride and padding parameters, the size of the output

map can be decreased. To detect objects of different sizes, we

process the input image in multiple scales S = {s1, . . . , sm}.

α
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∆
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Fig. 4: The detections are projected to the map by integrating

additional data. Based on the position (ilat, ilon) and heading

ih of the image, the position (tlat, tlon) and heading th of

the traffic sign are determined. To approximate the geoinfor-

mation depending on the position and size of the bounding

box, the relative heading ∆th (green) and distance td (blue)

between the image and traffic sign are calculated.

We extract potential object bounding boxes by identifying

all positions in the output maps where the probability is

greater than a minimal threshold tmin = 0.2. We describe

a bounding box by b = (bx, by, bw, bh, bc, bs), where (bx, by)
is the position of the center, bw×bh the size, bc the class, and

bs the score. The bounding box size corresponds to the field

of view which is equal to the size of a single image patch.

All values are scaled according to the scale factor. The score

bs is equal to the probability in the output map.

For determining the final bounding boxes, we process

the following three steps. First, we apply non-maximum

suppression on the set of bounding boxes for each class to

make the system more robust and accelerate the next steps.

Therefore we iteratively select the bounding box with the

maximum score and remove all overlapping bounding boxes.

Second, traffic signs are special classes since the subject of

one traffic sign can be included similarly in another traffic

sign as illustrated in Fig. 3. We utilize this information by

defining a list of parts that can occur in each class. A part is

found when a bounding box b′ with the corresponding class

and an Intersection over Union (IoU) greater than 0.2 exists.

If this is the case we increase the score by b′s · 0.2/P , where

P is the number of parts. Third, we perform non-maximum

suppression on the set of all bounding boxes by iteratively

selecting the bounding box with the maximum score and

removing all bounding boxes with IoU > 0.5.

The final predictions are determined by selecting all

bounding boxes that have a score bs greater or equal than

a threshold tc for the corresponding class.

IV. LOCALIZATION

In this process we integrate additional data from other

sensors to determine the position and heading of the traffic

signs. For localization of the traffic signs, we use the GPS-

position (ilat, ilon) and heading ih of the images. The heading

is the direction to which a vehicle is pointing. The data is



included in our dataset which is described in detail in Section

V. As illustrated in Fig. 4, we transform each bounding box

b = (bx, by, bw, bh, bc, bs) to a traffic sign t = (tlat, tlon, th, tc),
where (tlat, tlon) is the position, th the heading, and tc the

class. Since the position and viewing direction of the image is

known, we approximate the traffic sign position and heading

by calculating the relative heading ∆th and distance td.

The relative heading is based on the horizontal position

bx of the bounding box in the image. We calculate the

horizontal offset to the center of the image normalized by the

image width iw. Additionally, we multiply the value by the

estimated angle of view αaov. Thereby, the relative heading

is calculated by ∆th = αaov · (bx/iw − 0.5).
The distance td between the position of the image and the

position of the traffic sign is approximated by estimating the

depth of the bounding box in the image. Traffic signs have a

defined size tw×th, where tw is the width and th the height.

Since an approximate depth estimation is sufficient, we use

the information about the size and assume a simple pinhole

camera model. Given the focal length f and the sensor width

sw of the camera obtained from the data sheet and a bounding

box with width bw, we calculate the approximated distance

by td = f · tw · iw/(bw · sw).
Lastly, a traffic sign t = (tlat, tlon, th, tc) is generated. The

class tc equals the bounding box class and the heading is

calculated by adding the relative heading to the heading of

the image th = ih +∆th. The traffic sign position (tlat, tlon)
is determined by moving the position of the image by td in

the direction th.

V. DATASET

To collect data in real-world environments, smart phones

are used for data recording because they can be readily

attached to bicycles. Many people own a smart phone so

that a large number of users can be involved. The recorded

dataset consists of more than 40 000 images.

A. Data Capturing

We developed an app for data recording which can be

installed onto the smart phone. Using a bicycle mount, the

smart phone is attached to the bike oriented in the direction

of travel. While cycling, the app captures images and data

from multiple sensors. Images of size 1080 × 1920 pixels

are taken with a rate of one image per second. Sensor data

is recorded from the built-in accelerometer, gyroscope, and

magnetometer with a rate of ten data points per second.

Furthermore, geoinformation is added using GPS. The data

is recorded as often as the GPS-data is updated.

B. Filtering

After finishing a tour, the images are filtered to reduce the

amount of data. Especially monotonous routes, e.g. in rural

areas, produce many similar images. However, the rate with

which images are captured cannot be reduced because this

increases the risk of missing interesting situations.

We therefore introduce an adaptive filtering of the images.

The objective is to keep images of potentially interesting

situations that help to analyze traffic situations, but to remove

redundant images. For instance, interesting situations could

be changes in direction, traffic jams, bad road conditions, or

obstructions like construction works or other road users.

For filtering, we integrate motion information and apply

a twofold filtering strategy based on decreases in speed and

acceleration: (i) Decreases in speed indicate situations where

the cyclist has to slow down because of potential traffic

obstructions such as for example traffic jams, construction

works, or other road users. Speed is provided by the GPS-

data. We apply a derivative filter to detect decreases in

speed. As filter, we use a derivative of Gaussian filter with a

bandwidth, i.e. standard deviation, of 2 km
h2 . (ii) Acceleration

is used to analyze the road conditions and to detect for

example bumps. It is specified per axis. Each data point

consists of a three-dimensional vector. We calculate the

Euclidean norm of the vector and apply two smoothing filters

with different time spans: One with a large and one with a

short time span. Thus, we filter the noisy acceleration data

and detect the situations in which the short-term average

acceleration relative to the long-term average acceleration

exceeds a threshold of k. For smoothing, we use Gaussian

filters with bandwidths of 1.5 g and 10 g, with standard

gravitational acceleration g = 9.81 m
s2

, and set k = 2.8. We

filter the images by removing images if none of the two

criteria indicates an interesting situation.

The filtering process reduces the amount of data by a factor

of 5 on average. Subsequently, the data is transfered to a

server.

VI. EXPERIMENTS

Experiments are conducted to demonstrate the perfor-

mance of the recognition system. Due to the limited amount

of labeled data, the pipeline is trained on patches and then

extended to perform object recognition. First, results are

presented on the classification of a single patch. Afterwards,

the recognition performance is illustrated. The comparison

of patch-wise processing and fully convolutional processing

of full images is shown in the end.

Random forests are trained and tested on a Intel(R)

Xeon(R) CPU E5-2650 v3 @2.30GHz, and neural networks

on a NVIDIA GeForce GTX Titan X using the Caffe [24]

framework. The proposed system is programmed in Python.

A. Training and Test Data

10 different traffic signs that are interesting for cyclists are

selected. Because the signs differ from traffic signs for cars,

the availability of labeled data is very limited. Some classes

come with few labeled data but for some classes no labeled

data is available.

To have ground truth data of our classes for training and

testing, we manually annotated 297 bounding boxes of traffic

signs in the images. The data is split into training set and

test set using a split ratio of 50/50. In Fig. 5, the number

of samples per class are shown. The training data consists

of 146 samples for all 10 classes which corresponds to less



Fig. 5: Number of training and test samples in each class.

On average only 15 samples are available per class for each

set.

Fig. 6: Confusion matrix showing the performance of the

classifier on the test set. The absolute number of samples

are shown in the matrix.

than 15 samples per class on average. Please note that class

1000-32 has only 4 examples for training.

Additionally, 2 000 background examples are randomly

sampled for training and testing. The splitting is repeated

multiple times and the results are averaged.

B. Classification

The first experiment evaluates the performance of the

classification on patches. The evaluation is performed in two

steps. First, the training for learning features is examined

and, secondly, the classification on the target task.

For feature learning, the GTSRB [1] dataset is used since

it is similar to our task and has a large amount of labeled

data. The dataset consists of 39 209 examples for training

and 12 630 examples for testing over 43 classes. After

training, the convolutional neural network CNNF achieves

an accuracy of 97.0% on the test set.

In the next step, the learned features are used to generate

a feature vector of each training example of our dataset, and

then to train a random forest. For evaluation, the test data is

processed similarly. A feature vector is generated for each

example from the test set using the learned feature generator

CNNF and classified by the random forest subsequently.

The random forest classification achieves an accuracy of

99.3% on the test set. The confusion matrix is shown in

Fig. 6. Three classes are classified without errors. All other

classes, except from the background class, only contain a

(a) Standard traffic signs (b) Info signs

Fig. 7: Precision-recall curves for evaluating the recognition

performance. The shape of the curves is erratic because few

labeled data is available for training and testing.

single or two misclassified examples. Classes 1000-32 and

242.1 which consist of 4 and 7 examples have larger errors.

Classes 242.1 and 244.1 which have a similar appearance are

confused once. Some background examples are classified as

traffic signs and vice versa. Please confer to Fig. 6 for more

information about the traffic signs the classes correspond to.

C. Object Recognition

The next experiment is conducted to demonstrate the

recognition performance of the proposed system. The task

is to detect the position, size, and type of all traffic signs

in an image. The images have a high diversity with respect

to different perspectives, different lighting conditions, and

motion blur.

The recognition system is constructed by extending the

CNN for patch-wise classification to a fully convolutional

network so that fast processing of full images is enabled. A

filtering strategy is applied subsequently to predict bounding

boxes. No additional training data is required during this

process so that only 146 examples over 10 classes are used

for training the recognition system. We process the images in

8 different scales. Starting with the scale s0 = 1, the image

size is decreased from scale to scale by a factor of 1.3.

To evaluate the recognition performance, we process all

images in the test set and match the predicted bounding boxes

with the ground truth data. Each estimated bounding box is

assigned to the ground truth bounding box with the highest

overlap. The overlap is measured using the IoU and only

overlaps with an IoU > 0.5 are considered.

All bounding boxes come with a score and the class

specific threshold tc determines if a bounding box is accepted

or rejected as described in Section III-E. For each class, the

threshold tc is varied, and precision and recall are calculated.

The resulting precision-recall curves are shown in Fig. 7.

To facilitate understanding these results, two graphs are

shown. In the first, the precision-recall curves of a group of

standard traffic signs are plotted. The results are good. Some

classes are detected almost perfectly. In the second graph, the

precision-recall curves of a different group of traffic signs are

plotted. These signs are much more difficult to recognize as

they are black and white and do not have a conspicuous color.

The performance of each class correlates with the number

of examples that are available for training. Class 9001 with



class 237 239 240 241 242.1 244.1 267 1000-32 1022-10 9001

AP 0.694 0.880 0.967 0.696 0.869 0.994 0.559 0.130 0.483 0.590

TABLE I: Average precision of each class on the test dataset.

Fig. 8: Selected failure cases for class 267.

0 FP

0 FP1 FN

Fig. 9: Recognition results for randomly chosen examples

of the test set. In each row, the ground truth traffic sign

is shown on the left along with correctly recognized traffic

signs (first three columns from the left), false negatives (next

two columns), and false positives (last column to the right).

Some classes do not have more than a single false negative

or no false positives at all.

17 training examples performs best, class 1022-10 with 12
training examples second best, and class 1000-32 with only

4 training examples worst. In Fig. 8 failure cases for class

267 are shown. Patches with similar appearance are extracted

due to the limited variability with few training samples and

missing semantic information since the broader context is

not seen from the patch-wise classifier. To summarize the

performance on each class the average precision (AP) is

calculated. The results are presented in Table I. In total, the

recognition system achieves a good mean average precision

(mAP) of 0.686.

In the last step, the final bounding box predictions are

determined. The threshold tc of each class is selected by

calculating the F1 score for each precision-recall pair and

choosing the threshold with the maximum F1 score. Some

qualitative results are presented in Fig. 9. In each row, exam-

ples of a particular class are chosen at random. Examples that

are recognized correctly are shown in the first three columns,

examples that are not recognized are shown in the next two

columns. Some of these examples are twisted or covered by

stickers. Examples which are recognized as traffic sign but in

fact belong to the background or a different class are shown

in the column to the right. These bounding box patches can

have a similar color or structure.

(a) (b)

Fig. 10: The distance error with respect to GPS-inaccuracy

(a) and distance between the recording device and the traffic

sign (b). The black lines indicate the medians, the upper and

bottom ends of the blue boxes the first and third quantile.

D. Computation Time

In the third experiment we evaluate the computation time.

Random forests are fast at test time for the classification

of a single feature vector. When processing a full image,

the random forest is applied to every patch in the feature

maps. For an image of size 1080 × 1920 the feature maps

are produced relatively fast using CNNF and have a size of

268 × 478 so that 124 399 patches have to be classified to

build the output probability map. The images are process

in 8 different scales. All together, we measured an average

processing time of more than 10 hours for a single image.

Although, the computation time could be reduced by using a

more efficient language than Python, the time to access the

memory represents a bottleneck due to a large overhead for

accessing and preprocessing each patch.

For processing all in one pipeline, we constructed the

fully convolutional network CNNFCN. The network combines

feature generation and classification and processes full im-

ages in one pass. The time for processing one image in 8

different scales is only 6.08 seconds on average. Compared

to the patch-wise processing using random forest, using

the fully convolutional network reduces the processing time

significantly.

E. Precision of Localizations

The last experiment is designed to demonstrate the lo-

calization performance. The localization maps the predicted

bounding boxes in the image to positions on the map.

Position and heading of a traffic sign are calculated based

on the geoinformation of the image as well as the position

and size of the bounding boxes.

For evaluation, we generate ground truth data by manually

labeling all traffic signs on the map that are used in our



dataset. In the next step, correctly detected traffic signs are

matched with the ground truth data. The distance between

two GPS-positions is calculated using the haversine formula

[25]. The maximal possible difference of the heading is 90◦

because larger differences would show a traffic sign from

the side or from the back. Each traffic sign is assigned to

the ground truth traffic sign that has the minimum distance

and a heading difference within the possible viewing area of

90◦. The median of the localization error, i.e. the distance

between the estimated position of the traffic sign and its

ground truth position, is 6.76m. Since the recorded GPS-data

also includes the inaccuracies of each GPS-position, we can

remove traffic signs which are estimated by more inaccurate

GPS-positions. If traffic signs with a GPS-inaccuracy larger

than the average of 3.95m are removed, then the median of

the localization error decreases to 5.95m.

The errors of the localizations (y-axis) with respect to the

GPS-inaccuracies (x-axis) are plotted in Fig. 10a. The orange

dots indicate estimated positions of traffic signs. The black

lines indicate the medians, the upper and bottom ends of

the blue boxes the first and third quantiles. It can be seen

that the localization error does not depend on the precision

of the GPS-position as it does not increase with the latter.

The localization errors (y-axis) with respect to the distances

between the positions of the traffic signs and the GPS-

positions (x-axis) are shown in Fig. 10b. It can be seen that

the errors depend on the distance between traffic sign and

bicycle as they increase with these distances. This can be

explained by the fact that the original inaccuracies of the

GPS-position are extrapolated, i.e. the larger the distances,

the more the GPS-inaccuracies perturb the localizations.

Since smart phones are used as recording device, the

precision of the GPS-coordinates is lower than those used in

GPS-sensors integrated in cars or in high-end devices. As the

inaccuracies of the GPS-positions have a large influence on

the localizations, we intend to identify multiple observations

of the same sign in future work. Then, the localization error

could be reduced by considering multiple observations of the

same traffic sign.

VII. CONCLUSION

We presented a system for object recognition that is trained

with very few labeled data. CNNs have shown great results

in feature learning and random forests are able to build a

robust classifier even if little data is available. We combined

the advantages of CNNs and random forests to construct a

fully convolutional network for predicting bounding boxes.

The system is built in three steps. First, we learned features

using a CNN and trained a random forest to perform patch-

wise classification. Second, the random forest is mapped to

a neural network. Afterwards, we transform the pipeline to

a fully convolutional network to accelerate the processing

of full images. Whereas deep learning typically depends

on the availability of large datasets, the proposed system

significantly reduces the required amount of labeled data.

The proposed system was evaluated on crowdsourced data

with the aim of collecting traffic information for cyclists. We

used our system to recognize traffic signs that are relevant

for cyclists. The system is trained with only 15 examples per

class on average. Furthermore, we showed how additional

sensor information can be used to locate traffic signs on the

map.
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