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Abstract

Motion analysis is often restricted to a laboratory setup
with multiple cameras and force sensors which requires ex-
pensive equipment and knowledgeable operators. There-
fore it lacks in simplicity and flexibility. We propose an
algorithm combining monocular 3D pose estimation with
physics-based modeling to introduce a statistical frame-
work for fast and robust 3D motion analysis from 2D video-
data. We use a factorization approach to learn 3D mo-
tion coefficients and join them with physical parameters,
that describe the dynamic of a mass-spring-model. Our ap-
proach does neither require additional force measurement
nor torque optimization and only uses a single camera while
allowing to estimate unobservable torques in the human
body. We show that our algorithm improves the monocu-
lar 3D reconstruction by enforcing plausible human motion
and resolving the ambiguity of camera and object motion.

The performance is evaluated on different motions and
multiple test data sets as well as on challenging outdoor
sequences.

1. Introduction
Nowadays, a vast amount of labeled 2D video data of

moving persons in various scenarios, e.g. sports, acting,
health etc. is easily accessible [8, 17, 27]. The crucial prob-
lem is, how to effectively assess hidden information, such
as force and torque characteristics, that can teach us about
the efficiency and healthiness of human motion. While the
two topics of 3D motion reconstruction from 2D landmarks
(known as nonrigid structure from motion) and physical hu-
man modeling are heavily investigated separately there ex-
ists only small amount of research on the combination of
both. In this paper we will show how a joint model can en-
hance both the 3D reconstruction and the physical modeling
of human motion.

The recovery of 3D human poses in monocular im-
age sequences is an inherently ill-posed problem, since
the observed projection on a 2D plane can be explained
by various 3D poses and camera positions. Most recent

Figure 1. Analysis of lifting motions: Based on 2D motion data
we estimate the torque in the lower back for different kinds of lift-
ing motions. In contrast to other approaches we use the laboratory
setup only for evaluation. The orange arrows represent modeled
outer forces and the red areas the maximum joint torque. Lengths
and radii are proportional to the force and torque magnitudes, re-
spectively.

works reconstruct human poses from learned subspaces
and define priors on the reconstructed 3D poses based on
knowledge about human motion or simple physical priors
[1, 23, 33, 34]. These methods achieve acceptable results
but are too restrictive as they limit the solution to a prede-
fined skeleton or violate biomechanical constraints by ig-
noring knowledge about the kinematics of human motion.

In this paper we use a factorization approach similar to
[13, 21, 23, 34]. We assume a set of labeled joints through-
out the sequence. Our goal is to decompose it into three fac-
tors, namely camera motion, base poses and mixing coeffi-
cients. We iteratively estimate the camera parameters and
mixing coefficients to obtain a 3D reconstruction of the hu-
man motion. Since this 3D reconstruction violates biome-
chanical constraints we project it to a joint model of mixing
coefficients and physical parameters to obtain a plausible
human motion. Due to a physical simulation we are able to
eliminate the ambiguity between object and camera motion
which is inherent in all structure from motion problems.

In addition to the 3D pose estimation we analyze the re-
constructed 3D motion regarding inner forces, referred to as
joint torques. They are the sum of all moments effecting a
joint, caused by muscles, ligaments and neighboring bone
segments. Joint torques are of special interest in biome-
chanical studies, since they can act as a measure for the



strain at a joint. For example, the alignment of prosthetics
can be characterized by investigating joint torques during
gait [25]. The method of choice, used in gait analysis lab-
oratories is to inversely calculate joint torques from ground
reaction forces (GRF) [36] and joint trajectories. This poses
a disadvantage, since the trajectory data and the related ac-
celerations have a high uncertainty, in general.

Alternatively, the estimation of joint torques can be
achieved via forward dynamics optimization. Here torques
are implemented in the equations of motion (EOM) and es-
timated by solving an optimization problem, that includes
the integration of EOM. This method has the advantage of
directly accessible joint torques, but the required integra-
tion entails high computational cost [37]. Furthermore the
choice of objective (usually some form of energy function)
to be minimized is crucial for the quality of results and the
convergence of the optimization algorithm requires suffi-
cient initialization. Therefore this method lacks in stability
and robustness.

In order to circumvent these issues, we apply a data-
driven statistical approach. Physical model parameters are
learned together with associated motion mixing coefficients
resulting in a combined statistical model, that enables us to
directly infer 3D information from a monocular image se-
quence, without the need for expensive optimization.

We will test the performance of our joint model for two
motion types (walking and lifting). We focus on the analysis
of gait patterns, because this basic form of movement is es-
sential in biomechanical research [12, 25]. Additionally, an
exemplary measure for healthiness of lifting motions is de-
fined to demonstrate practicability of our proposed method
for health applications (cf. Fig. 1). We will show 3D re-
constructions of motion capture sequences as well as recon-
structions of the challenging outdoor sequences of the KTH
data base [17] and evaluate the stability of 3D reconstruc-
tions with respect to noisy and occluded input joint trajec-
tories. Our algorithm is stable up until an occlusion of 25 %
of the joints, while other physics-based methods [6, 16] fail
when confronted with incomplete input information.

To the best of our knowledge this is the first approach
to combine 3D reconstructions from moving uncalibrated
monocular cameras with a 3D physical model in a joint
framework.

Summarizing, our contributions are:

• A joint model for 3D motion reconstruction and phys-
ical analysis from moving monocular cameras. The
joint model naturally solves the ambiguity of camera
and object motion.

• Estimation of formerly non-observable inner and ex-
terior forces from a set of monocular images without
tedious optimization.

• Analyzing healthiness of lifting motions.

2. Related Work
The factorization of a set of tracked 2D features of a non-

rigid object in two sets of variables describing camera mo-
tion and object motion was first proposed by Bregler et al.
[4]. They model a pose in a single image as a linear com-
bination of rigid base shapes. Since these base shapes are
ambiguous [38] there are multiple works constraining the
formulation of [4] with additional priors [2, 9, 30, 31].

The mentioned solutions to the nonrigid structure from
motion problem create good results for benchmark data sets.
However, they fail for most real world sequences where
there is insufficient camera motion as shown by [2]. There-
fore a number of authors propose the use of different priors
on the reconstructed shapes. Common approaches for re-
construction of human motion from single images or image
sequences use trained base poses and anthropometric con-
straints [1, 23, 33, 34]. These works show the efficiency of
using information about human anthropometry. However,
they do not model any forces or torques acting on the hu-
man body.

In this work we include a physical model for human mo-
tion that considers inner (joint torques) and outer forces
(ground reaction forces/interaction with objects). Physics-
based modeling of human motion is an established ap-
proach in the field of computer graphics for the synthesis
of physically-valid movement [11, 24, 28, 35, 40]. In com-
puter vision physical models are used to facilitate object and
person tracking [5, 20, 32], since they address frequently
occurring inaccuracies, such as unrealistic or instable move-
ment. Furthermore the integration of a physical model al-
lows for video-based motion analysis, i.e. the estimation of
forces and moments, acting on the observed body [3]. Re-
garding a complex dynamical system, such as the human
body, this problem has been sparsely examined.

Brubaker et al. [6] use an articulated mass-spring model
to estimate joint torques and contact dynamics based on 3D
motion capture data. The authors decouple the EOM at dif-
ferent frames by introducing additional root forces in order
to avoid the high computational cost induced by the inte-
gration step in forward dynamics optimization. While our
physical model is inspired by [6], we do not use unphysical
root forces and bypass the expensive optimization by learn-
ing model parameters on a training set of motion sequences.
Furthermore [6] requires knowledge about the global posi-
tion and orientation of the root joint and is therefore inap-
plicable for moving camera scenarios.

Other works focus on the synthesis of realistic motions
using physics-based modeling, e.g. to learn a subject spe-
cific description of motion styles [18] or to enforce physical
constraints on statistical motion priors [35]. The authors
concentrate on the generation of natural-looking movement
and do not discuss the soundness of resulting force and
torque profiles.



Recently researchers attempt to learn a mapping from a
motion to the corresponding joint torques: Johnson et al.
[16] investigate sparse coding for inverse dynamics regres-
sion and find that the resulting torque errors are unaccept-
ably large. A related problem is treated in [39]. The authors
introduce a joint statistical model for the physical analy-
sis of gait patterns in 2D. In [19] a data-driven prior model
for contact information and joint torques is constructed to
reduce the ambiguity of inverse dynamics. In contrast to
these approaches, we propose a 3D statistical model, con-
sisting of motion mixing coefficients and physical param-
eters. On this basis, we demonstrate monocular torque es-
timation, that is very robust with respect to noisy and oc-
cluded input joint trajectories and requires small computa-
tion times, compared to optimization-based methods.

3. Pose Estimation
The pose estimation from 2D joint labels is based on a

nonrigid structure from motion formulation, such as [4]. We
assume that the input data can be decomposed in camera
matrices, base poses and coefficients for these base poses.
The 3D base poses are learned from 3D sequences of the
same motion category as the motion we want to reconstruct.
The algorithm iteratively minimizes a reprojection error to
solve for the camera matrices and coefficients.

LetW2d ∈ R2f×j be the input data consisting of stacked
2D poses P1,...,f ∈ R2×j for f frames and j joints. Each
row of Pi for i = 1, . . . , f contains the 2D point coordi-
nates of the j joints.

To achieve translational invariance each Pi is subtracted
by the mean of all Pi which centers it at the origin. We
assume that the input data can be factored in two terms
representing camera matrices K ∈ R2f×3f and 3D poses
S ∈ R3f×j

W2d =KS. (1)

S is constructed in the same way as W2d by stacking 3D
poses Si ∈ R3×j . We construct Si from a linear combina-
tion of k base posesQ0,1,...,k ∈ R3×j similar to [4].

Si = Q0 +

k∑
l=1

αlQl (2)

S can now be written as

S =

 Q0 +
∑k

l=1 αl,1Ql

...
Q0 +

∑k
l=1 αl,fQl

 = A

 Q0

...
Qk

 = AQ,

(3)
where

A =

 1 α1,1 · · · αl,1

...
...

. . .
...

1 α1,f · · · αl,f

⊗ I3 (4)

and⊗ denotes the Kronecker product. While the base poses
Ql can be learned by a principal component analysis on
similar motion sequences, the only unknowns are the cam-
era matrices K and the mixing coefficients A. Approaches
that iteratively estimate the camera matrices and the coef-
ficients have proven to give good results, even on single
images [23, 34, 33]. However, the number of coefficients
is large. Our approach is motivated by [2] as we are rep-
resenting the coefficients in a trajectory basis. In contrast
to [2] we use our previously learned shape basis and it-
eratively solve for the coefficients and camera parameters
instead of solving for the shape basis. This is done by de-
composing the coefficient matrix A in the trajectory basis
matrixB ∈ Rf×b and a weighting matrixD ∈ Rb×k with b
as the number of trajectory bases which reduces the number
of unknowns to b · k.

A = (BD)⊗ I3 (5)

While an arbitrary set of basis functions is possible, base
functions of a discrete cosine transform (DCT) have proven
to give good results due to their excellent energy com-
paction for highly correlated data [2]. Using basis functions
also enforces smoothness of the weights in A, which ap-
pears to be a valid assumption considering human motion
(cf. [33]).

With Eqs. (1),(3) and (5) a reprojection error can be min-
imized by

min
K,D
‖W2d −K(BD ⊗ I3)Q‖F . (6)

Eq. (6) is solved by iteratively optimizing for K and D.
Note, that both sub problems are convex and can be effi-
ciently solved by modeling tools for specifying and solving
convex programs such as [14, 15].

4. Physical Model
The physical simulation is based on a 3D mass-spring-

model, consisting of 13 segments. The kinematic chain is
parametrized according to Denavit-Hartenberg [29] and has
29 degrees of freedom (DOF), that constitute the mutually
independent model coordinates q. Six of them describe the
global position and orientation of the root link, leaving 23
DOF for internal joint angles. The state of the model at
a time t is defined by its link configuration and the corre-
sponding linear and angular velocities [q(t), q̇(t)]T .

Each of the internal links is associated with a torsional
spring that exerts a torque τj on adjacent segments, accord-
ing to

τj = −κj(qj − q(0)j )− dj q̇j , (7)

with joint link angle qj , stiffness κj , resting angle q(0)j and
damping constant dj . In order to generate realistic human
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Figure 2. Detection of the phases of a walking motion using the
extrema of the first and second base pose coefficient.

movement, we divide motion sequences into several phases
with separate sets of spring parameters. Since one phase
corresponds to a uniform motion the phase transitions can
be easily estimated by detecting the extrema in the base
shape coefficients as shown in Fig. 2.

The GRFs are simulated by incorporating a contact
model which is inspired by [6]. Vertical reaction forces
and frictional forces are implemented as very stiff damped
spring forces, modulated by sigmoid functions and act on a
set of contact points at the sole of the foot, when they ap-
proach the ground. One sigmoid causes the contact forces to
be zero when the contact points are distant from the ground
and the other prevents an acceleration towards the ground.
The total contact force is defined as

Fc(q, q̇) =Fv(yc(q))σ(s1Fv(q))ey

− dhJcq̇ σ(s2(y0 − yc(q))) (8)
Fv(yc) =(−κv(yc − y0)− dv ẏc)σ(s2(y0 − yc)) ,

where σ = (1+exp(−x))−1. The two terms in Eq. (8) rep-
resent vertical contact force and friction, respectively. The
ground plane is described by its normal vector ey and its
offset y0. The contact force is depending on the contact
point height yc(q) and the linear and rotational horizontal
velocity components Jcq̇, with contact Jacobian Jc. The
spring stiffness κv and attenuation constants dv and dh are
optimization parameters, i.e. variable for every motion. The
residual factors are empirically set to [s1, s2] = [30, 3 ·103].

To simulate a motion of the physical model, equations
of motion (EOM) have to be formulated and solved numer-
ically. We derive the EOM by means of the TMT-method
[26]:

Mq̈ = τ + JT (M(ag −G) + Fc) . (9)

Here M = JTMJ andM denote the mass matrix in gen-
eralized and mutually dependent coordinates, respectively,
with the Jacobian J , describing the corresponding transfor-
mation. Relative segment masses, moments of inertia and

center of mass positions are set according to anthropometric
data [7]. In addition to joint torques τ and contact force Fc,
we incorporate gravitational acceleration ag and convective
accelerationG.

The estimation of active joint torques is done via for-
ward dynamics optimization. In other words, we simulate
a motion, using our physical model and optimize parame-
ters Θ = [qT0 , q̇

T
0 ,κ

T , q(0)T ,dT ] to minimize the distance
between states and additional regularization terms. Here
[qT0 , q̇

T
0 ]

T denotes the initial state of the model and the vec-
tors κ, q(0) and d include spring constants, resting angles
and damping constants for all modeled springs. The corre-
sponding optimization problem reads as follows,

Θ =argmin
Θ

{
w0

T

T∑
t=1

∣∣[q, q̇]Tmod,t − [q, q̇]Ttarg,t
∣∣2

+
w1

T

T∑
t=1

(
τT
t τt + τ̇

T
t τ̇t

)
(10)

+
w2

T

T∑
t=1

(Jcq̇mod,t)
T (Jcq̇mod,t)

}
,

with [q, q̇]Tmod,t = D(Θ, t) and τt = τ (Θ, [q, q̇]Tmod,t).
The function D represents the dynamical state develop-
ment, i.e. the numerical integration of EOM using the
Runge-Kutta Dormand-Prince 5 method [10] and starting
from the initial state [qT0 , q̇

T
0 ]

T . The vector τt is composed
of all joint torques, which are active at time t and is calcu-
lated with Eq. (7).

In the first term of Eq. (10), we evaluate the squared dis-
tance between simulated motion and target motion. The
second term represents dynamic effort and jerk with torque
components calculated according to Eq. (7). This term
penalizes highly energetic, jittery and quickly oscillating
movement. The last term of the objective function de-
scribes the mean velocity of feet contact points on the
ground, which is supposed to be near zero. The weights
(w0, w1, w2) are empirically set to (1, 10−2, 10−2) for
walking and to (1, 5 · 10−4, 10−2) for lifting. This adjust-
ment is necessary, since the required torques to lift weights
like 17 kg (as it was performed by the subjects in the test
sequences) are essentially higher than active torques dur-
ing locomotion. We solve the optimization problem using
a standard Sequential Quadratic Programming (SQP) ap-
proach [22] starting from multiple points.

5. Joint Pose and Torque Estimation
In this section the algorithm which combines the 3D re-

construction of Sec. 3 with the physical model of Sec. 4 is
presented. Our proposed algorithm first performs the 3D
pose reconstruction (cf. Sec. 3) followed by the physical
simulation (cf. Sec. 4) to eliminate any ambiguities between



Figure 3. Comparison of the temporal behavior of bone lengths after 3D reconstruction (left) and after applying the physical model (right).
Obviously, the desired bone length constancy is assured.

camera and object motion as well as enforcing a physically
plausible reconstruction.

Before starting the reconstruction we build the joint pa-
rameter space consisting of the weighting matrixD and the
physical parameters Θ. While the parameters Θ are the re-
sults of the optimization problem in Eq. (10), the weighting
matrix D can be calculated with Eq. (3) and Eq. (5). To
eliminate the Kronecker product the matrices S and Q are
reshaped so that each column represents a single pose, re-
spectively. By combining Eq. (3) and Eq. (5) the 3D shape
can be written as S̃ = BDQ̃, where S̃ and Q̃ correspond
to the reshaped matrices of S andQ. For known 3D shapes
S from the training data,D can be directly calculated via

D = B+S̃Q̃+, (11)

where B+ and Q̃+ denote the Moore-Penrose pseudoin-
verses of B and Q̃, respectively. Finally, a vector vk com-
posed of the vectorized weighting matrix D and the physi-
cal parameters Θ is assigned to each sequence k in the train-
ing set:

vk =

(
vec(D)

Θ

)
. (12)

Here, vec(·) is the vectorization operator which stacks the
columns of the matrix into a vector. We assume that a newly
observed motion lies in the space spanned by the vectors vk
for each sequence k.

In the first step, the proposed algorithm performs a 3D
reconstruction of an observation represented by the matrix
W2d as described in Sec. 3. The result is a camera ma-
trix M and the weighting matrix D. The consequent 3D
shapes are calculated applying Eq. (3) and Eq. (5). Since
we use a linear model to represent nonlinear deformations
the estimated 3D motion is expected to differ from the real
motion. This can be easily seen when analyzing the tem-
poral behavior of the bone lengths, shown on the left in
Fig. 3. After the 3D reconstruction the bone lengths fluc-
tuate heavily due to the above mentioned linear model. We
address this issue by limiting our parameter space to physi-
cally valid motions, in other words, we infer weighting co-
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Figure 4. Consistency of torques: Estimated knee torques for all
reconstructed walking sequences (left). The torques are shown for
a full gait cycle with mean value in blue and standard deviation in
green. On the right hand side an example of the knee torque for
the stance phase, calculated via inverse dynamics is displayed.

efficients and physical parameters by means of a k-nearest-
neighbor (k-NN) regression in the space spanned by the
vectors vk. As suggested by [39] we use the local k-NN
regression, which outperforms global approaches like PCA
or asymmetric PCA for this particular problem. The recov-
ered physical parameters Θ are now employed to simulate
a 3D motion by integrating the corresponding set of EOM,
as described in Sec. 4.

This step converts the rough 3D pose estimation to a
physically feasible 3D reconstruction of the observed mo-
tion. Comparing the bone lengths variation before (cf.
Fig. 3 left) and after physical simulation (cf. Fig. 3 right)
indicates an improvement regarding plausibility. Further
evaluation is done in Sec. 6.

Additionally, the use of the physical model allows us to
resolve the ambiguity between camera and object motion.
Based on the knowledge we gain from the physical simu-
lation of the observed object, e.g. the forward movement
during walking, we can use a standard camera calibration
technique with known 2D-3D point correspondences to re-
construct the camera parameters.

6. Experiments
We evaluate our joint model concerning 3D motion and

torque estimation using a training set of MoCap sequences,
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Figure 5. Consistency of forces: Modeled vertical contact forces
(left) with mean value in blue and standard deviation in green for
the whole set of gait sequences. The curve on the right hand side
displays the vertical component of a measured GRF vector.

consisting of 45 walking and 31 lifting motions. The data
recording was performed with a Vicon T-series MoCap-
system and the corresponding GRF was measured by syn-
chronized AMTI force plates. For each reconstruction, fol-
lowing the method described in Sec. 5, the considered se-
quence is excluded from the training set.

6.1. Torque and Force Estimation

First of all, we evaluate the estimation of knee torques
from 2D walking data. The results are generated as de-
scribed in Sec. 5, i.e. we reconstruct a 3D motion and in-
fer physical parameters Θ from the resulting motion coef-
ficients, applying a k-NN regression in our joint parameter
space. Based on Θ we simulate a gait and determine the
corresponding model torques using Eq. (7). The resulting
mean value of knee torques for all reconstructed walking
sequences is shown in Fig. 4 together with the related stan-
dard deviation.

For comparison, we calculate the knee torque of an ex-
ample sequence via inverse dynamics, utilizing force plate
data. The model results cover a full gait cycle, while the
inverse dynamics solution is only determined for the stance
phase. This is due to the inapplicability of inverse dynamics
for joints in the swing leg, since the kinematic chain from
contact point to joint becomes too long.

The estimated torques are consistent for all reconstructed
3D motions and the shape of the curves and absolute values
are similar to inverse dynamics torques. Although, recon-
structed extension knee torques tend to be too high from
mid-stance to heal-off, compared to values found in biome-
chanics literature. This might be due to model inaccuracies,
concerning mass distribution or imprecision of the skeleton,
fitted to the MoCap data.

To analyze the adequacy of our physical model, we de-
pict vertical contact spring forces on the left in Fig. 5. On
the right hand side the vertical component of the GRF, mea-
sured by force plates is shown for comparison. Minimum
and maximum values are slightly high and low, respectively
but the overall curve progression resembles ground truth
data.
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Figure 6. Distance from heel to root joint normalized by leg length.
While the 3D reconstruction penetrates the ground in the frames 10
to 20, the physical simulation eliminates all implausible motion.

This experiment shows, that our joint model provides a
sound estimation of unobservable 3D torques from monoc-
ular videos. The mean computation time for the 3D re-
construction and torque estimation amounts to 21 s, includ-
ing the optimization for camera and coefficient matrices
(Eq. (1)), which accounts for over 99%. The pure regres-
sion of torques from a 3D motion requires computation
times in the order of 0.1 s. To put this value into perspective,
we implement the method introduced in [6] and optimize
using SQP. In doing so we receive computation times that
surpass the afore stated result by approximately two orders.
All calculations were performed on an 8-core processor and
based on unoptimized Matlab code.

6.2. 3D Reconstruction

We performed 3D reconstructions of multiple data sets
including walking and lifting motions, both with additional
force measurement (cf. Sec. 6). For each sequence mul-
tiple random weak perspective cameras are created to ob-
tain monocular input data. Our method achieves a mean
3d error of 0.219m ± 0.032m for walking motion and
0.257m ± 0.026m for lifting motion. Since it is not pos-
sible to find an objective measure for physical plausibility
we performed multiple experiments observing bone lengths
and joint trajectories to show the plausibility of our results.

6.2.1 Physical Plausibility

For human motion analysis bone lengths have to be constant
over time. The 3D reconstruction represents the mixing co-
efficients as weighted DCT bases (cf. Sec. 3) which results
in heavily fluctuating bone lengths as shown on the left in
Fig. 3. After projecting the obtained weights in the joint pa-
rameter space the physical model fixes the bone lengths in
the sequence. The bone lengths for the physical simulation
are obtained by calculating the mean of the bone lengths in
the 3D reconstruction. Fig. 3 shows the bone lengths be-
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Figure 7. Influence of additional noise (top) and occlusions (bot-
tom) on the reconstruction results: The figure shows the mean
(blue) and standard deviation (green) of the 3D error. The noise
is given by percent of the subjects body height. The reconstruc-
tion stays stable up to 18 % noise on the input data and up to 25 %
of occluded data points.

fore and after projecting into the joint parameter space for
an example sequence of our test data set.

Since feet motion is one of the most important factors in
human gait we evaluate for feet motion separately. Fig. 6
shows the distance from heel to root joint normalized by
the leg length for the same sequence as in Fig. 3. In this
case the DCT bases cause the heel trajectory to overshoot
which causes the heel to penetrate the ground. Applying the
physical model adjusts the heels trajectory by eliminating
implausible motion from the 3D reconstruction.

6.2.2 Stability

To evaluate the noise stability of our method we add Gaus-
sian noise to the input data. According to Eq. 6 we define
a 3D error by e = ‖W3d − P ‖F , where W3d describes
the ground truth poses and P describes the reconstructed
poses. The left of Fig. 7 shows the 3D error as a function
of the noise relative to the percentage of body height. With
noise as large as 18 % of the body height, the 3D error is
still close to the 3D error with noiseless reconstruction.

In realistic scenarios (i.e. not using motion capture
equipment) one or multiple body parts can be occluded, ei-
ther by an object or by other body parts. To evaluate the
robustness against occlusions we randomly occlude points
in the joint trajectories. This can easily be done by setting
the values corresponding to the occluded points to zero in
the objective function in Eq. (6), which equals to canceling
equations. The right of Fig. 7 shows the 3D error as a func-
tion of percentage of occluded points in the joint trajectory.
The proposed algorithm appears to be stable up to 25 %
occlusion. Since the reconstructions in the stable regions
are almost identical, the joint torques are consequently very
similar. Therefore, we pass an extensive evaluation here and
refer to Sec. 6.1.

6.2.3 Real World Data

The proposed algorithm is not restricted to a laboratory
setup and can also be used in real world scenarios. Here,

Figure 8. 3D Reconstruction and estimated torques of the KTH
football data set. The reconstructions and torques (red spheres)
appear to be plausible compared to the corresponding images and
torques in Sec. 6.1.

we use the KTH football data set [17] as it contains multi-
view sequences of a challenging noisy outdoor scene, which
shows a football player walking over a playfield. Fig. 8
shows the 3D reconstruction and estimated torques from
camera 1. As expected the reconstructions from the other
two cameras are very similar and have a maximal recon-
struction error of 0.05m. The estimated torques appear to
be plausible compared to the torques in Sec. 6.1. Note, that
compared to Fig. 7 the torques are larger due to the more
dynamic gait pattern of the subject in the KTH data set.

6.2.4 Camera Path

One of the largest benefits of using a physical model for
pose estimation is the known object translation which al-
lows for a calibration of the cameras. Every 3D reconstruc-
tion technique which does not know the object translation
suffers from the ambiguity of camera and object motion.
Due to our proposed physical model it is possible to recover
the translation of the person which allows us to perform a
camera calibration which recovers the camera parameters.
For evaluation we created multiple artificial camera paths
of weak perspective cameras in a distance up to 10m from
the ground truth 3D data and use the projections as input
data for our algorithm. For 50 randomly created camera
paths on different sequences we achieve a mean distance of
0.6m from the ground truth path and a mean angle error of
9.4◦.

6.3. Motion Analysis

In order to demonstrate the benefit of our joint model
for health applications, we examine torques during lifting
exercises. For this purpose we recorded MoCap sequences
of subjects lifting a box that weighed 17 kg. The subjects
were asked to lift the box in two different ways: first with
bent knees and straight back and then with straight knees
and bent back as it is shown in Fig. 1. The data was used to
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Figure 9. Comparison of different lifting motions: Accumulated
quadratic torques (dynamic effort) for the forward-backward flex-
ion of the lumbar vertebrae joint.

construct a joint model space for lifting motions that allows
us to analyze the acting joint torques.

We determine the dynamic effort Elv =
∑

t τ
2
lv,t result-

ing from the extension torque τlv in the lower back joint
(lumbar vertebrae) to define a health measure for the con-
sidered lifting motions. Fig. 9 shows health measure values
for a healthy and an unhealthy lifting style, respectively.
The motions are clearly distinguishable according to Elv,
since the accumulated sum of quadratic torques is about
50 % higher in the case of the unhealthy lifting motion with
straight knees and bent back. A visualization of the com-
parison including estimated torques and modeled contact
forces can be found in Fig. 1. This example shows, that
our joint model opens the possibility for a direct health rat-
ing of 2D motion data supported by profound knowledge
about the underlying physics.

7. Conclusion
This paper proposes a joint statistical model for hu-

man motion reconstruction and joint torque estimation from
monocular image sequences. We combine 3D pose estima-
tion by means of a factorization approach with a physical
model of the human body to enforce physical validity on
estimated 3D motions and to allow the estimation of un-
observable inner moments. We tested the performance of
the proposed method in terms of plausibility, accuracy and
subjective quality on a dataset of 45 walking and 31 lifting
motions as well as on the real world example of the KTH
database [17]. Some of the reconstructions including torque
estimation are shown in Fig. 8 and Fig. 10.

References
[1] I. Akhter and M. J. Black. Pose-conditioned joint angle lim-

its for 3d human pose reconstruction. In IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR 2015), pages
1446–1455, June 2015. 1, 2

[2] I. Akhter, Y. Sheikh, S. Khan, and T. Kanade. Trajectory
space: A dual representation for nonrigid structure from mo-

Figure 10. 3D reconstruction and estimated torques of a walking,
a healthy lifting and an unhealthy lifting motion (from top to bot-
tom).

tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(7):1442–1456, July 2011. 2, 3

[3] K. S. Bhat, S. M. Seitz, J. Popović, and P. K. Khosla. Com-
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