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spectrum of characteristics for ensuring statistically meaningful 
results: raw (FASTQ) and aligned (SAM, or BAM) data with both 
deep and shallow coverage; fixed-length and variable-length reads 
obtained by sequencing technologies from leading manufacturers 
(Illumina, Pacific Biosciences, Oxford Nanopore, Ion Torrent); 
genome, exome and transcriptome data from various organisms 
(Homo sapiens, bacteria, plants, insects, etc.); and several sample 
types (metagenomic, cancer cell lines, etc.) as well as simulated 
human data are included in the final data set of 4 terabytes. The 
data set was reviewed and approved by all members of the MPEG 
HTS compression working group for benchmarking purposes. It 
is expected that the data set will grow further to accommodate 
future technologies and additional requirements.

As members of the MPEG HTS compression working group, 
we have conducted a comparative study of all available lossless 
HTS compression tools on the MPEG benchmarking data set, 
significantly expanding some recent comparative studies and 
surveys1–3. We developed an open-source, publicly available 
framework specifically tailored for HTS compression evalua-
tion, placing a special emphasis on fairness and reproducibility 
of the benchmarking process (https://github.com/sfu-compbio/
compression-benchmark). Together with the data diversity pro-
vided by the MPEG benchmarking data set, this framework is also  
suitable for the review and comparison of future tools.

Data set selection criteria, complete framework description, detailed 
usage information and comprehensive benchmarking results are avail-
able in Supplementary Notes 1–6 and Supplementary Figure 1.

We aimed to evaluate all available approaches used for HTS  
data compression. These approaches include both industry-
scale tools as well as research-oriented prototypes. Compression  
performance, running times, memory usage and parallelization 
capabilities were measured for each tool.

Most HTS data are maintained either as raw sequencing infor-
mation in a FASTQ file or as reference-aligned (mapped) data in 
SAM or BAM formats. The FASTQ and SAM schemata describe 
different data fields with similar properties (e.g., the sequence 
field consists only of DNA nucleotides, while mapping loci are 
usually represented as a nondecreasing sequence of integers), gen-
erating large files. It is common to use general-purpose compres-
sion tools on these files, which treat them as simple plain text files 
and thus produce suboptimal compression rates because they are 
not able to exploit the underlying data schemata.

All HTS data compression tools are built on a standard set 
of general compression algorithms, which are surveyed in 
Supplementary Note 2.

FASTQ files are typically compressed with general-purpose 
Gzip and bzip2 tools. Sequence archives commonly use NCBI’s 
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High-throughput sequencing (HTS) data are commonly stored 
as raw sequencing reads in FASTQ format or as reads mapped to 
a reference, in SAM format, both with large memory footprints. 
Worldwide growth of HTS data has prompted the development 
of compression methods that aim to significantly reduce HTS 
data size. Here we report on a benchmarking study of available 
compression methods on a comprehensive set of HTS data using 
an automated framework.

Current trends in HTS data generation indicate that storage, trans-
mission and bandwidth costs will soon surpass the costs of sequenc-
ing and become the main bottleneck in genomics as well as in the 
application of HTS data to precision medicine. One way to reduce 
the burden of HTS data on storage, bandwidth and transmission 
is the use of high-performance compression methods developed 
specifically for HTS data. In the last 25 years the Moving Picture 
Experts Group (MPEG), also known as the ISO/IEC JTC1/SC29/
WG11 committee, has developed a methodology that has yielded 
compression standards extensively adopted by the digital media 
industry. A growing number of experts in genome data processing 
have joined MPEG experts in a working group (which we will refer 
to as the ‘MPEG HTS compression working group’) to explore how 
data compression expertise from the multimedia world can help 
improve the performance of existing genomic data compression 
tools. The ISO Technical Committee 276 (Biotechnology) (ISO 
TC 276) Working Group 5 (Data Processing and Integration) has 
also joined the effort with its specific biotechnology expertise.  
The ultimate goal of the activity of the MPEG HTS compression 
working group is to design and specify genomic data compres-
sion and transport technology by means of an open standard and 
interoperability among systems.

As a first step toward developing an open standard, MPEG and 
ISO TC 276 have issued a call to the international community to 
evaluate the effectiveness of available compression methods on 
a common set of genome data. For this purpose, the MPEG HTS 
compression working group compiled an HTS data set with a wide 

1School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada. 2Wellcome Trust Sanger Institute, Hinxton, UK. 3Vancouver Prostate 
Centre, Vancouver, British Columbia, Canada. 4Institut für Informationsverarbeitung, Leibniz Universität, Hannover, Germany. 5École Polytechnique Fédérale de 
Lausanne, Lausanne, Switzerland. 6School of Informatics and Computing, Indiana University, Bloomington, Indiana, USA. 7These authors contributed equally to  
this work. Correspondence should be addressed to S.C.S. (cenksahi@indiana.edu).
Received 12 May; accepted 1 September; published online 24 October 2016; doi:10.1038/nmeth.4037

https://github.com/sfu-compbio/compression-benchmark
https://github.com/sfu-compbio/compression-benchmark
http://dx.doi.org/10.1038/nmeth.4037


1006  |  VOL.13  NO.12  |  DECEMBER 2016  |  nature methods

brief communications

SRA format, which is loosely based upon the LZ-77 scheme. 
Specialized FASTQ compressors initially perform a form of 
transformation (read-identifier tokenization or 2-bit nucleotide 
encoding) followed by statistical modeling and entropy coding. 
Examples of such approaches are DSRC2 (ref. 4), FQC5, Fqzcomp 
and Fastqz6, Slimfastq, and LFQC7.

Because the read order within a FASTQ file is arbitrary, reor-
dering the reads in a manner that brings similar reads together 
can significantly boost compression rates8. This is especially true 
if the underlying genome is repetitive, or if the coverage of the 
data is high; in such cases, schemes like LZ-77 can benefit signifi-
cantly from the improvement of data locality. Tools like SCALCE8, 
Orcom9, Mince10 and BEETL11 use this approach as a preprocess-
ing step in order to improve compression performance.

Alternative approaches aim to achieve compression by replac-
ing each read with a pointer to the underlying reference genome, 
provided such a reference genome is available. LW-FQZip12 is 
one such example that relies on sequence mapping to obtain a 
list of pointers. If the reference genome is not available, it can be 
constructed de novo by assembling the reads into contigs, usually 
through the use of de Bruijn graphs. Subsequently, a read can  
be represented as a pointer to an assembled contig or as a path 
within a de Bruijn graph. Primary tools that use assembly for 

data compression are Quip13, Leon14, k-Path15 and KIC16. Note 
that both sequence mapping and assembly are computationally 
intensive tasks; as a result, most of the tools mentioned above 
sacrifice speed for maintaining high compression rates.

SAM files are mostly stored in their compressed equivalent, 
the BAM format. Commonly used tools for BAM manipulation 
are Samtools17, Picard, and Sambamba18. All BAM-based tools 
support arbitrary ordering of the reads and do not require a refer-
ence during compression or decompression. None of them treat 
various streams in a BAM file differently.

An alternative to the SAM format is CRAM, a reference-based 
format that separates different fields in the reads and applies 
a variety of compression techniques on each. CRAM is imple-
mented in Cramtools19 and Scramble20; and has recently been 
incorporated in Samtools17 and Picard.

In both SAM and CRAM, reads covering the same sequence 
variant are encoded independently. As such, the same variant is 
redundantly encoded across the reads. In order to eliminate this 
redundancy, DeeZ, a newer alternative21 to SAM and CRAM, 
implicitly assembles the underlying donor genome in order  
to encode these variants only once. CBC22 and TSC23 follow a 
similar path, only encoding variants one time. All of these tools 
treat each SAM field independently, and they apply a variety of 

Table 1 | A summary of evaluated tools and their performance in a single-thread mode.

Sample SRR554369 SRR327342 MH0001.081026 SRR1284073 SRR870667 ERR174310 ERP001775

Organism 
Pseudomonas

aeruginosa
Saccharomyces

cerevisiae
Technology 
Coverage 25×

File size Time File size Time File size File size File size File size File sizeTime Time Time Time Time
80× Unknown 140× 20× 7× 120×

Uncompressed
—full file
Uncompressed
—reads only

968,35449,22903,1088,1188,3055 2,717,029

669,02364,7946215749561 1,059,387

pigz 158 1 1,020 1 501 1 547 1 6,943 1 18,597 1 305,690 1
48 1 277 1 149 1 188 1 2,108 1 5,982 1 104,927 1

pbzip2 125 1.19 831 1.45 390 1.29 463 0.74 5,577 0.99 14,887 0.81 242,834 0.21
44 5.97 251 6.85 139 6.35 176 6.99 1,879 3.61 5,473 2.83 95,969 1.23

DSRC2 0.22 668 0.26 312 0.24 N/A 
4,761 0.21 13,214 0.2 N/A 

41 2.11 257 3.09 128 1.91 1,865 1.39 5,239 1.22
DSRC2
(extra)

95 0.71 595 0.7 287 0.8 N/A 4,246 0.7 11,598 0.67 N/A 
39 11.81 230 11.33 125 12.96 1,636 6.25 4,773 5.78

Fqzcomp 0.34 559 0.37 280 0.41 N/A 
4,028 0.33 11,320 0.32 N/A 

37 N/A 203 7.54 120 N/A 1,556 N/A 4,623 3.29
Fqzcomp
(extra)

94 0.39 589 0.39 286 0.41 N/A 4,228 0.35 11,673 0.34 N/A 
41 N/A 234 7.5 128 N/A 1,796 N/A 5,167 3.47

Fastqz
A/NA/NA/NA/NA/N

10,955 3.45 N/A 
4,312 N/A 

Slimfastq 0.55 507 0.47 266 0.54 N/A 
4,280 0.51 11,045 0.47 178,092 0.49

30 11.46 149 9.55 104 11.32 1,416 5.8 4,426 4.76 77,629 5.94
FQC 76 1.05 494 1.18 268 1.39 413 0.98 3,912 1.16 11,409 1.22 N/A 

17.07 N/A 12.12 N/A 5.93 N/A 5.74 
LFQC 69 18.63 490 18.54 266 21.06 407 18.03 2,412 14.46 

N/A N/A 
17 315.41 129 310.81 103 339.93 156 386.25 N/A N/A 

SCALCE 0.77 487 0.63 297 0.8 421 0.67 3,699 0.6 10,827 0.59 161,067 0.57
17 9.05 68 8.23 71 12.17 161 9.78 998 4.89 3,017 4.57 28,452 1.94

LW-FQZip 1.13 790 0.6 N/A N/A 
5,038 2.27 N/A N/A 

45 5.62 320 5.16 1,735 2.5
Quip 0.5 537 0.53 272 0.47 420 0.36 3,914 0.48 11,312 0.46 184,051 0.38

37 10.7 181 11.53 114 11.37 159 10.59 1,462 5.57 4,556 5.22 79,771 4.64
Leon  3.43 544 2.92 291 3.91 479 2.81 4,518 4.15 13,623 3.43 220,397 1.13

19 16.84 89 16.7 87 14.84 N/A 34.31 1,360 10.91 4,739 9.67 83,539 4.66
KIC 5.81 613 7.29 307 4.73 451 9.4 4,498 6.5 13,006 6.25

N/A 
32 6.65 188 7.72 122 6.35 N/A 9.37 1,594 3.44 4,915 3.33

Orcom 78.064.05.0 N/A 0.83 0.66 0.12 
11 1.51 36 0.91 51 1.87 825 1.22 1,798 0.83 6,921 0.23

BEETL 64.228.221.4 N/A 4.44 4.38 N/A 
23 36.81 117 30.24 114 31.02 1,200 22.11 3,912 20.95 

Mince 91.562.425.4 N/A 2.42 2.57 N/A 
10 2.38 37 2.24 50 3.25 685 0.86 1,955 0.9

k-Path 40.3137.130.2
N/A 

2.29 3.22 
N/A 

14 30.08 45 20.19 62 149.57 660 15.39 2,088 16.57 

(a) FASTQ tools
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compression techniques to each field. Finally, Quip13 and sam_
comp6 employ highly optimized statistical models for various 
SAM fields, which puts them among the best performing tools 
in terms of pure compression rate. The full description of the 
evaluated tools and the infrastructure used for the evaluation is 
available in Supplementary Notes 3 and 5.

An overview of our results is presented in Table 1, while more 
detailed results are available in Supplementary Tables 1–7.

Some of the available tools achieve significant gains over Gzip and 
bzip2, both in terms of compression rate and speed. The best com-
pression rates are offered by tools that reorder reads; these tools are 
especially effective for sequence compression. Alternative tools such 
as LFQC may also provide good compression rates, but they come 
with a high running time overhead. It should be noted that reor-
dering-based tools also perform very well in terms of speed. Their 
memory usage is slightly higher but not unreasonable, and it can 
be user configured in most cases. Many tools significantly improve 
their performance through parallelization, even though the per-
formance improvement is not always proportional to the number 
of processors. The best trade-off between the number of processors 
and running time is typically achieved with four threads.

The majority of the available tools are optimized for Illumina-
style short, fixed-length reads—many tools do not provide an 

option to compress long, variable-length read collections, such as 
data obtained with sequencers from Pacific Biosciences.

It is possible to obtain better compression rates than those 
achieved by Samtools, even with the simple use of Gzip. However, 
unlike Samtools, Gzip does not provide random-access capability. 
Among the available tools, only BAM and CRAM-family tools, DeeZ 
and TSC provide a random-access facility. Interestingly, Scramble 
and DeeZ also improve upon the performance of sam_comp  
and Quip in most cases, both in terms of compression rate and 
speed, while providing random-access capability. In most cases, 
Scramble can also decompress files faster than Samtools can.

Our evaluation of all compression tools currently available  
in the literature on a wide variety of data sets resulted in no 
overall winner that can perform well on each data type and 
under every performance measure we used. We conclude  
that an integrated solution that chooses the specific approach 
which performs the best on the input data type(s) with respect  
to the performance measure most important for the specific 
application would yield the best outcome, both for raw and 
aligned sequence data. Many of the tools we benchmarked 
improve not only the compression rate but also the compres-
sion time of the most commonly used methods; i.e., Gzip or pigz  
for FASTQ files and Samtools for SAM, or BAM, files. Although 

Table 1 | A summary of evaluated tools and their performance in a single-thread mode. (continued) 

(a) For each FASTQ tool and sample, the left two columns indicate the overall compressed size and the sequence-only compressed size, respectively. Right column indicates the compression and 
decompression times relative to Gzip (pigz), with lower values indicating better running time. The last three rows show the performance of sequence-only tools. In the ERP001775 sample, all 
tools were run with four threads, with the exception of pigz and Slimfastq. KIC and k-Path also required running with four threads. (b) For each SAM tool and sample, the left column indicates 
the overall compressed data size. Right column indicates the compression and decompression times relative to Samtools, with lower being better. Last row denotes sam_comp, which does not 
support all SAM fields. In the NA12878.S1 sample, all tools were run with four threads, with the exception of Samtools and sam_comp. Dark green color indicates the best tool in the given 
category (compression rate or time), while light green indicates second-best tool. Analogously, orange denotes second-worst tool, while magenta indicates the worst performance. Asterisk indi-
cates that the tool does not support all SAM fields. Missing data points (caused by either crashes or compatibility issues) are marked with N/A, and further explained in Supplementary Note 5.

Sample DH10B 9827.2.49 sample-2-1 K562.LID8465 dm3 NA12878.PB HCC1954 NA12878.S1
Organism E. coli H.sapiens H.sapiens H.sapiens Drosophila melanogaster H.sapiens H.sapiens H.sapiens
Technology MiSeq

File size Time File size File size File size File size File size File size File sizeTime Time Time Time Time Time Time

HiSeq IonTorrent RNASeq PacBio PacBio cancer cell HiSeq
Coverage 420× 2× 0.6× 6× 75× 15× 30× 50×
Uncompressed 5,579 21,059 5,924 75,915 30,081 126,545 427,028 589,083

pigz 1,336 0.77 6,021 1.55 1,378 1.48 12,785 1.06 12,315 1.39 52,914 1.37 119,839 1.4 113,462 0.13
0.63 0.82 0.49 0.7 0.79 0.7 0.91 0.6

pbzip2 1,074 1.65 5,243 1.93 1,127 4.04 10,251 3.57 9,717 0.72 43,128 0.94 100,280 1.62 89,598 0.46
3.16 3.39 3.72 2.46 2.93 3.94 3.23 0.59

Samtools 1,407 1 6,499 1 1,469 1 13,757 1 12,853 1 57,090 1 131,566 1 121,710 1
1 1 1 1 1 1 1 1

Picard 1,425 1.42 6,517 1.04 1,474 1.82 13,818 1.48 12,837 0.74 57,316 0.55 132,861 1.18 N/A
2.76 1.52 2.1 2.44 1.09 1 1.91

Sambamba 1,407 1.05 6,499 0.93 1,469 1.12 13,757 1.05 12,859 2.48 57,090 0.93 131,566 1.39 121,710 0.13
1.08 1.13 0.97 0.97 1.92 1.12 1.12 0.53

Cramtools 
(CRAM v2)

1,066 0.93 3,778 1.42 1,170 2.12 10,344 1.7 7,577 0.93 38,266 1.01 95,442 1.28 N/A
1.71 1.67 4.93 2 2.05 2.39 1.5

Scramble  
(CRAM v3)

863 0.23 3,297 0.29 1,030 0.62 9,261 0.38 6,551 0.14 34,425 0.31 82,041 0.27 66,632 0.1
0.76 0.66 1.58 0.67 0.58 0.84 0.71 0.5

Scramble 
(CRAM v3 
w/o 
reference)

899 0.29 4,236 1.18 1,113 0.45 9,839 0.43 10,562 0.21 44,843 0.46 86,914 0.37 72,407 0.1
0.74 0.63 1.06 0.78 1.14 1.54 0.79 0.47

Scramble 
(CRAM v3 
with bzip2)

851 0.76 3,262 0.62 998 1.5 8,611 1.27 6,469 0.17 33,921 0.48 80,094 0.6
N/A0.89 0.66 1.72 0.81 0.67 1.63 0.82

DeeZ 823 0.56 3,221 0.78 1,028 1.81 8,120 0.92 6,681 0.51 34,639 0.64 78,473 0.91 62,966 0.26
3.9 2.46 5.51 3.35 1.77 1.86 2.94 1

DeeZ  
(with bzip2 
and 
sam_comp 
qualities)

730 0.91 2,734 1.23 918 3.49 7,266 2.01 6,585 0.71 34,172 1.22 74,509 1.66 53,497 0.41
10.11 5.6 9.86 7.91 4.86 6.67 6.39 1.9

TSC 1,105 2.21 7,939 0.8 1,193 2.55 20,864 3.17 8,397 3.14 45,452 1.46 164,627 0.5
N/A

9.05 2.24 6.75 6.27 6.46 6.43 2.65
Quip 1,103 0.67 4,419 0.94 1,230 1.15 11,186 1.19 9,024 0.44 42,642 0.67 98,303 0.83 97,165 0.44

10.69 7.81 4.43 8.27 7.52 9.87 9.05 2.18
Quip  
(with 
reference)

803 0.67
N/A N/A

8,743 1.17 6,461 0.41
N/A N/A

64,493 0.43

10.06 8.2 7.19 2.2

sam_comp* 700 0.68 2,649 0.76 891 1.2 7,023 0.71 8,356 0.51 32,670 0.59 42,522 0.62 53,263 0.37
3.36 2.95 6.54 3.56 5.49 5.42 3.25 2

(b) SAM tools
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this is not always the case for decompression time, the time 
necessary for decompressing pigz-compressed FASTQ files and 
Samtools-compressed SAM files is insignificant; in fact ≤1/100  
of the time necessary for running the most commonly used 
downstream analysis pipelines (e.g., for read mapping in FASTQ 
files and for variant calling in SAM files). Future integration  
of some of the best performing compression tools we tested  
with commonly used variant calling pipelines such as GATK (which 
produces multiple BAM files during execution) may significantly  
improve the overall running time of GATK on account of smaller 
data footprints and thus improved locality of reference.

MPEG’s decision to issue a call for proposals soliciting the sub-
mission of technology for genomic data processing and storage 
was aimed at developing a standard compressed file format in 
the coming years. Such a standard will likely integrate the best 
features of the tools and formats evaluated in this study. The 
potential impact of an international standard for genomic data 
compression would be groundbreaking in terms of both systems 
interoperability and efficiency, enabling population-wide scaling 
of existing genomic applications.

Methods
Methods, including statements of data availability and any  
associated accession codes and references, are available in the 
online version of the paper. 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
See Supplementary Notes 1–6 for details regarding data formats, 
compression techniques, compression tools, data set and tool 
selection, and benchmarking.

Data availability. Benchmark data samples are available at https://
github.com/sfu-compbio/compression-benchmark/blob/master/
samples.md.

https://github.com/sfu-compbio/compression-benchmark/blob/master/samples.md
https://github.com/sfu-compbio/compression-benchmark/blob/master/samples.md
https://github.com/sfu-compbio/compression-benchmark/blob/master/samples.md
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