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3D Reconstruction of Human Motion from
Monocular Image Sequences

Bastian Wandt, Hanno Ackermann and Bodo Rosenhahn

Abstract—This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by
uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and
mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To
obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that
strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion
such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone
length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints
and can handle arbitrary camera motion.
We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D
error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a
significant improvement.

Index Terms—human motion, structure and motion, factorization, 3D reconstruction.
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1 INTRODUCTION

THE recovery of 3D human poses in monocular image
sequences is an inherently ill-posed problem, since the

observed projection on a 2D image can be explained by
multiple 3D poses and camera positions. Nevertheless ex-
perience allows a human observer to estimate the pose of
a human body, even with a single eye. The purpose of this
paper is to achieve a correct 3D reconstruction of human
motion from monocular image sequences as shown in Fig. 1.

Recent works considering the non-rigid structure from
motion problem (e.g. [2], [3], [4]) work well as long as there
is a camera rotation around the observed object. Due to
ambiguity in camera placement and 3D shape deformation
they fail in realistic scenes such as a fixed camera filming
a person walking by as shown in Fig. 2. Several single
image pose recovery approaches (e.g. [5], [6], [7], [8]) use
strong constraints on the observed shape to overcome this
problem. These methods achieve acceptable results but are
too restrictive for general 3D reconstructions as they limit
the solution to a predefined skeleton. Obviously, applying
these single image approaches for image sequences results
in an unstable 3D motion reconstruction.

In this article, we use a trilinear factorization approach
similar to [3], [8], [9] and [6]. We assume that a set of
feature points on the skeleton of the person is tracked
throughout the sequence. Our goal is to decompose it into
three factors for camera motion, base poses and mixing co-
efficients. Different to [9] and [3], we keep the second factor
fixed which corresponds to 3D structure, similar to [8] and
[6]. Furthermore, we propose to regularize the third factor,
commonly interpreted as the mixing coefficients: Firstly, we
impose a prior well suited for periodic motion. Secondly,
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constraints on the limb lengths are applied. As opposed to
[8] and [6] where lengths or relations of particular limbs
need to be a-priorly known, we constrain the limbs lengths to
be invariant.

We demonstrate that our algorithm works on motion
capture data (CMU MoCap [10], HumanEva [11]) as well
as on challenging real world data as for example the KTH
Football Dataset [1] shown in Figure 1. Additionally we
are analyzing the influence of the number of base poses
and the regularization factor on the reconstruction result.
Furthermore we demonstrate that our algorithm is robust to
noise and also able to handle occlusions and reconstruct the
occluded body parts correctly. We show that it can also be
used for motion classification tasks.

Our method allows to correctly reconstruct 3D human
motion from feature tracks in monocular image sequences
with arbitrary camera motion. It does not use a predefined
skeleton or anthropometric constraints. Additionally it can
handle occlusions and noisy data. Summarizing, the contri-
butions of this article are as follows:

• A periodic model for the mixing coefficients for
periodic and quasi-periodic motions such as walking
is introduced.

• We propose a novel regularization term for non-
periodic motions.

2 RELATED WORK

The factorization of a set of 2D points tracked over a se-
quence of images was proposed by Tomasi and Kanade [12].
It rests upon the idea that the input data is decomposed into
two sets of variables, one of which is associated with the mo-
tion parameters, the other with the coordinates of the rigid
3D structure. This algorithm was generalized to deforming
shapes by Bregler et al. [13] by expressing the observed
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Fig. 1. Real world scenario of KTH database [1]. Left: frames 115, 136 and 143 of Sequence 1 from Football Dataset II. Right: 3D reconstruction
using our proposed method

Fig. 2. 3D reconstruction (green circles, blue lines) and ground truth
data (red crosses). Top: Using approach of Gotardo and Martinez [4].
Most non-rigid structure from motion approaches with no rotation and
unknown base poses fail, although they produce a small reprojection
error (left). From other perspectives (right) a wrong reconstruction can
be observed. Bottom: Our approach. Correct reconstruction in all views.

shape in any particular image as a linear combination of
multiple rigid basis shapes. Xiao et al. [14] showed that this
decomposition is non-unique. They extended a well-known
problem of rigid 3D reconstruction, namely the problem
of self-calibration, to the non-rigid case. Akther et al. [15]
showed that the solution proposed in [14] still is ambiguous.
Torresani et al. [16], [17], [18] independently proposed to
avoid the troublesome step of non-rigid self-calibration by
imposing a Gaussian prior on the linear mixing coefficients.
Akhter et al. [15] built on this idea and fixed the linear
coefficents in advance by selecting them from a cosine
function. This approach both adds a strong prior that the
non-rigidity can be explained by periodic base function, and
it also determines in advance the frequencies that the obser-
vations need satisfy. Gotardo and Martinez later extended
this approach by assuming smoothly moving cameras [2],
[3], [4] and 3D points. Akhter et al. [19] use a bilinear
spatiotemporal basis to apply it to graphics tasks including

labeling, gap-filling, de-noising, and motion touch-up. Zhu
et al. [20] proposed to use a small number of keyframes
to avoid ambiguities between point and camera motion.
Li introduced an approach based on L1-minimization [21]
where the number of mixing coefficients that are non-zero
is minimized.

Anthropometric priors have been used before in multi
camera human motion capture applications. Theobalt et al.
[22], [23] use an initialization step to estimate a template
of the skeletal structure through a silhouette-based fitting
process. Li et al. [24] use bone length constraints from a
template to reconstruct missing markers in motion capture
data. A relaxation of fixed bone lengths assumptions is
proposed by Kovar et al. [25]. They allow a slight change
of the template model to avoid the footskate effect resulting
from noisy motion capture data. Hasler et al. [26] enforce
mesh constancy for 3D body shape estimation and thus
implicitly enforce bone length constancy.

Several works have been proposed regarding the 3D
reconstruction of human poses given single images only
[5], [6], [7], [8]. State-of-the-art methods such as the work
of Ramakrishna et al. [6] represent a 3D pose by a linear
combination of a set of base poses that are learned from
motion databases. They are minimizing the reprojection
error using the sum of squared limb lengths as constraint.
This is a very weak constraint considering all the possible
but incorrect poses which satisfy this constraint. Wang et
al. [8] extended that model. Different to [6] they enforce the
proportions of eight selected limbs to be constant. However,
limb proportions differ from one person to another.

While all these approaches assume multi camera setups
or use fixed bone lengths priors, to the best of our knowl-
edge this is the first work using a temporal bone lengths
constancy prior for monocular 3D reconstruction of human
motion.

3 OUR APPROACH

Our approach consists of three main steps (see Figure 3).
First we assume, that every 2D motion sequence can be
factorized in a camera model and a series of 3D poses (sec-
tion 3.1), like in standard structure from motion approaches.
The 3D poses are composed of a linear combination of
base poses, that are retrieved by a PCA on different mo-
tion databases (section 4.1). To model periodic motion (eg.
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Fig. 3. Our method. (1) First we are learning 3D base poses from training
data. (2) Input sequence. (3) Cameras are recovered from estimated
3D poses and 2D poses. (4) Weights for base poses are calculated by
minimizing the reprojection error. Steps (3) and (4) are alternated until
the algorithm converges

walking and running), we show that it is possible, to assume
a periodic weight for the base poses to significantly reduce
the number of variables, that have to be calculated (section
3.3). Our algorithm (section 3.5) is alternatingly recovering
the camera matrices (section 3.2) and the 3D poses. Our
extension to non-periodic motion calculates the weights for
the base poses for each frame. We handle the large number
of variables by using a regularization term enforcing bone
length constancy over time. This leads to a highly realistic
3D reconstruction of different types of non-periodic motion
(section 3.4).

3.1 Factorization model

A single 3-dimensional pose P ∈ R4×a with a joints in
homogeneous coordinates can be written as a linear com-
bination of k previously learned base poses Ql ∈ R4×a

P = Q0 +
k∑
l=1

θlQl, (1)

where Q0 is the mean pose of all poses used for training
and θl ∈ R4×4 is the weight matrix for the base pose Ql.
With ϑl as the scalar weight for the l-th base pose each θl
has the form

θl =

(
ϑlI3

0

)
, (2)

where I3 is the 3 × 3 identity matrix. Note that only the
coordinates in the mean pose Q0 are describing a point in
homogeneous coordinates, while Q1,...,k are directions that
define deformations. By stacking poses we can write a 3D
sequence as W ∈ R4f×a of f images, with P1,...,f as the
poses in frames 1, . . . , f

W =

 P1

...
Pf

 . (3)

With Eq. (1) we can do a factorization

W =


Q0 +

∑k
l=1 θl,1Ql

...
Q0 +

∑k
l=1 θl,fQl

 = Θ


Q0

Q1

...
Qk

 = ΘQ, (4)
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Fig. 4. Influence of the camera path regularization on the reconstruction
result. A low value for the regularization parameter γ avoids flips while
a high value enforces a static camera. The best results are obtained for
values between 1 and 5.

where Θ ∈ R4f×4k contains the weight matrices θl.
The projection of a 3D pose Pi in the i-th frame to a 2D

posePi,2D ∈ R2×a is done by the camera matrixMi ∈ R2×4

Pi,2D =MiPi. (5)

To project the whole 3D sequence described by the matrix
W , the camera matrix M ∈ R2f×4f is used. Let M be a
sparse block diagonal matrix

M =

 M1

. . .
Mf

 . (6)

The factorization of a 2D sequence given by the matrix
W2D ∈ R2f×a can now be written as

W2D =MΘQ. (7)

When dealing with missing feature points (for example
caused by partly occluded body parts) the equations cor-
responding to these feature points can be excluded from
the optimization. This is further explained and evaluated
in section 4.7. This model is very similar to the models
proposed by [13], [9] and [3]. While they are fixing Θ and
optimize for M and Q, our approach is using a previously
learned Q and optimize for the weights Θ like [6] and [8]
did for single images.

3.2 Camera Parameter Estimation
To reconstruct the camera parameters we are assuming a
weak perspective camera. The pose in the i-th frame wi

2D

can be factorized with the above notation as

wi
2D =MiΘiQ, (8)

where Θi ∈ R4×4k denotes the weight matrix for this frame.
For the estimation of the camera parameters we assume the
3D pose described by ΘiQ to be known. The solution for
the camera matrices for each frame can be obtained by least
squares minimization of the reprojection error

min
MK

∣∣∣∣wi
2D −MiΘiQ

∣∣∣∣
F
. (9)

In our model eachMi describes a weak perspective camera.
Therefore we give the optimization algorithm used to solve
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Eq. (8) correct starting values for Mi which satisfy the
constraints for a weak perspective camera. We rewrite Eq.
(8) with (ΘiQ)+ as the right-inverse of ΘiQ

Mi = w
i
2D(ΘiQ)+. (10)

The scale parameter s of the weak perspective camera can
be determined by

s =
1

2

√
||Mi,1||2 + ||Mi,2||2, (11)

with Mi,1 as the first row and Mi,2 as the second row of
Mi. We receive an unscaled camera matrix by dividing
Mi by s. Next we orthonormalize the first 2 × 3 block
of the unscaled matrix with the help of a singular value
decomposition, where all singular values are set to 1. Re-
combining the orthonormalized block with the scale s and
the last column of the unscaled camera matrix gives a good
estimation for the starting values.

If we reconstruct the cameras for each frame separately
the camera orientations can flip. I.e. the camera matrix of
the flipped camera not only describes a weak perspective
projection but also a reflection at the origin of the coor-
dinate system. As this effect rarely occurs it can be easily
avoided by penalizing rapid changes in the camera path.
Therefore we propose a regularization term that calculates
the difference between the current camera matrix Mi and
the previous camera matrix Mi−1

rK,i = γ ||Mi −Mi−1||F , (12)

with γ as regularization parameter. Eq. (12) is equivalent
to forward differences. While central differences are also
possible, we will show in Section 3.5 that using forward
differences leads to a much faster optimization.

The whole minimization problem can now be written as

min
Mi

∣∣∣∣wi
2D −MiΘiQ

∣∣∣∣
F
+ rK,i. (13)

While the regularization term also allows smoothing of the
camera path, its sole purpose is to avoid camera flips. The
regularization is not necessary in most cases as the flips
only occur very rarely. Setting the parameter γ to a high
value would result in a static camera. Therefore we set γ
to a very low value where it avoids flips and only slightly
effects the camera path as shown in a small experiment
in Fig. 4. Although the reconstruction error without the
camera regularization (γ = 0) seems low there are three flips
in the camera path causing wrong 3D reconstructions. In
contrast to Zhu et al. [20] who solved the problem by using
keyframes, we do not assume any prior camera positions or
poses.

Considering the entries in

Mi =

(
m11 m12 m13 m14

m21 m22 m23 m24

)
(14)

we can enforce a weak perspective camera by the constraints

m2
11 +m2

12 +m2
13 − (m2

21 +m2
22 +m2

23) = 0 (15)

and
m11m21 +m12m22 +m13m23 = 0. (16)
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Fig. 5. Comparison of ground truth coefficients of the first four base
poses (top) with fitted periodic function (bottom) using the data set of
N. Troje [27].

3.3 Periodic Motion

With the camera matrix M calculated as described in
Section 3.2 the weights Θ for the base poses can be re-
constructed. Trying to optimize the reprojection error for
all variables in Θ fails, as there are to many degrees of
freedom. For periodic motion the number of unknowns can
be reduced by using a sine function to model the temporal
behavior of the weights in Θ.

Figure 5 shows the weights of the first four base poses of
a gait sequence and the corresponding fitted sine functions.
For this specific sequence the mean absolute error of the
periodic reconstruction to the ground truth data is 2.05mm.
It verifies the results obtained by N. Troje in [27], [28].
They used the same periodic assumption to describe human
gait patterns and did an extensive research on a large set
of persons. These observations can be made with running
motions as well. So the periodic assumption appears to be
appropriate for periodic motion.

As shown in Section 3.1 the number of unknowns in Θ
equals fk. By modelling the temporal behavior of ϑ as

ϑ(t) = α sin(ωt+ ϕ) (17)

the number of unknowns can be decreased to 3k. Note that
the number of variables does not depend on the number of
frames anymore yet only on the number of base poses. We
can thus minimize the 2D reprojection error

min
α,ω,ϕ

||W2D −MΘQ||F . (18)

Note, that the objective function in Eq. (18) is nonlinear
and nonconvex.

The use of sine functions to approximate human motion
was firstly proposed by Troje et al. [27], [28]. We use a
similar representation in Eq. (17) which can be motivated
from [15], since a sine function can be represented by a
linear combination of DCT bases. Modeling a structure from
motion problem in trajectory space using DCT bases, requires
a manually set or estimated number of DCT bases which
mostly results in too many degrees of freedom. In Fig. 2
we show that 3D reconstructions of approaches derived
from [15] (e.g. Gotardo and Martinez [4]) fail when there
is no sufficient camera motion in the sequence (i.e. low
reconstructibility as defined by Park et al. [9]). Combining
the use of a single sine function as weight as proposed by
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Fig. 6. Temporal behavior of bone lengths obtained by unconstrained
optimization. The maximal variation is about 40mm. Computed on CMU
MoCap (subject7/walk1).

N. Troje in [27], [28] with trained base poses results in a low
number of variables and plausible 3D reconstructions.

3.4 Non-Periodic Motion
To model non-periodic motion, periodic functions for the
weights of the base poses are not applicable anymore. Trying
to optimize all weights at once without constraints gives
good results for the 2D reprojection, but does not ensure
a realistic 3D reconstruction. Figure 6 shows the tempo-
ral behavior of the bone lengths using the unconstrained
optimization. There are variations in lengths up to 40mm.
This is caused by a slightly wrong initial camera position,
which the optimizer later tries to compensate by weighting
base poses wrongly. It results in a 3D reconstruction where
unrealistic bone length changes occur. To compensate this
we propose a regularization term, which holds the bone
lengths constant over time. Different to [6] and [8] we are
not using bone length constraints. Such a constraint would
restrict the model to a particular person.

The length of a bone is defined by the euclidean distance
between the 3D joint coordinates of that bone. These can be
directly obtained from the 3D reconstruction described by
ΘQ. We denote the length of bone s as

bs = ||js,2 − js,1||2 , (19)

where js,1 and js,2 are the coordinates of the endpoints of
that bone. We want to hold the bone lengths nearly constant
over time to ensure a realistic reconstructed skeleton, but
do not want to be too restrictive to the optimizer. In other
words the bone lengths should not change much. In the
optimal case they are not changing at all. We are using the
variance of the length changes over time of each bone as a
measure. To build the regularization term rB , we sum the
variances Var(•) of all bone lengths over time

rB = β
∑
i

Var(bi), (20)

with β as the regularization parameter. This regularizer
holds the bone length constant but is not fixing it to a
specific value. Note, that the same variance for a short
bone allows larger relative changes in length than for longer
bones. Using the relative variance, i.e. normalizing Var(bi)

by the mean of the bone length avoids this effect. However,
as experimentally shown in Fig. 11 there is no significant
difference in using the variance or the relative variance. Due
to this finding and to keep computational effort as low as
possible, all experiments are using Eq. (20) as regularizer.

The optimization problem can be written as

min
Θ
||W2D −MΘQ||F + rB . (21)

For the minimization of Eq. (18), the parameters α, ω
and ϕ of the functions defined by Eq. (17) are estimated.
Here, for minimizing the nonlinear and nonconvex objective
function in Eq. (21) we can estimate the coefficients Θ of the
linear combination ΘQ subject to the constraints defined by
Eq. (20) sinceQ defines the prior knowledge on the possible
deformations of human shapes.

The number of variables equals fk, i.e. it linearly de-
pends on the number of frames f . Using a skeleton with
15 joints gives the same number of 2D/3D point correspon-
dences per frame. By keeping the number of used base poses
k low there are more equations than unknowns.

3.5 Algorithm
To estimate the f + 1 sets of variables M1, . . . ,Mf and Θ
we alternatingly optimize for each of the sets while keeping
the others fixed. The optimization of each camera matrix
Mj , j = 2, . . . , f , requires the regularization terms rK,j and
rK,j+1. If we use central differences in Eq. (12), we need to
optimize all the sets Mj , j = 1, . . . , f , simultaneously. Us-
ing the proposed forward differences allows to sequentially
estimate them, i.e. given M1 we estimate M2, then M3 etc.
The precision of the estimated solution is hardly affected
while the computation time in our experiments reduces by
the factor 5. Shape parameters are estimated by minimizing
Eq. (18) in the case of periodic motion, and Eq. (21) in the
case of non-periodic motion, respectively. These constrained
nonlinear and nonconvex problems are optimized using a
second-order gradient descent algorithm.

In the first iteration we use the mean pose as initial-
ization. This means setting all values in Θ to zero except
the ones weighting the mean pose Q0. With that the initial
cameras are estimated framewise as described in Section 3.2.
The optimization for the weights of the base poses follows.
This step is depending on whether we are using the periodic
(Section 3.3) or the non-periodic model (Section 3.4). The
last two steps are repeated until the reprojection error is not
changing anymore.

Alternating the estimation of the parameter sets can be
seen as a variant of a block-coordinate descent by formulat-
ing one objective function for all parameters:

f(M1, . . . ,Mf ,Θ) = f(Θ) +

f∑
i=2

gi(Mi), (22)

where

f(Θ) = ||W2D −MΘQ||F + rB (23)
gi(Mi) = rK,i. (24)

The objective function for the periodic reconstruction can
be formulated in the same way. Convergence of coordi-
nate gradient descent is guaranteed if the joint objective
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Fig. 7. 2D reprojection error and 3D reconstruction error with different
regularization parameter β. While the 2D error is not changing much
or getting worse, the 3D error gets significantly better at most parame-
ter values. Computed on CMU MoCap (subject35/walk1). Qualitatively
there is no difference between different motion categories.

function is strongly-convex [29]. More recently, results on
convergence were established if at least one of the terms is
convex (see, e.g. [30]). Since neither of the terms in Eq. (22)
is convex, convergence cannot be guaranteed. However,
we will experimentally show that the proposed algorithm
converges to a reasonable local minimum in Section 4.5.

Algorithm 1 Recover camera and shape
Q← base shapes
while no convergence do

for t = 1→ f do
calculate starting values for Mt

optimize ||wi
2D −MtΘiQ||F + rK,i

insert Mt in M
end for
optimize ‖W −MΘQ‖F + rB

end while

4 EXPERIMENTAL RESULTS

To evaluate our method, we were using three different
databases: CMU MoCap [10], HumanEva [11] and KTH
Football [1]. We trained base poses (see Section 4.1) of
different motion categories, for example walking, jogging,
running and jumping to demonstrate the generality of our
method.

Instead of the reprojection error we define a 3D error e
as evaluation criterion

e =
1

f
||Win −Wrec||F , (25)

with Win as the ground truth 3D data and Wrec as the
reconstruction. To compare sequences of different lengths,
we are dividing the error by the number of frames f . As
shown in Section 2, the reprojection error is a bad criterion
for judging a 3D reconstruction. Therefore it is important
to use the 3D error instead of the reprojection error when
evaluating 3D reconstructions. For example with our bone
length regularizer we achieve a worse reprojection error but
a significantly better 3D reconstruction (see Figure 7). While
the reprojection error remains nearly constant for values
of the regularization parameters up to 60, the 3D error is

getting better. Only for very high values both errors are
getting worse. This is further evaluated in Section 4.4.

4.1 Learning base poses
For learning the base poses we were using different
databases: the well-known CMU Motion Capture Database
[10], the HumanEva dataset [11] and as a real world example
the KTH Football Dataset II [1]. These three databases are
using slightly different joint annotations, so it is important
to learn the base poses for each database separately.

We are learning the base poses by stacking pose vectors
of all frames and executing a PCA on this matrix. For each
of the used motion categories a linear combination of the
first ten eigenvectors obtained by the PCA is enough to
cover more than 99% of the variance in the dataset. It is also
possible to learn base poses for multiple motions at once. If
doing so, the number of base poses should be increased to
be able to fully cover all possible motions. The influence of
the used number of base poses on the reconstruction result
is evaluated later in Section 4.3.

4.2 Periodic Motion
As shown in Section 3.3, the number of unknowns can be
reduced when using periodic base functions. This results in
a much faster solving of the optimization problem. Figure 21
shows some frames of a reconstruction of a gait sequence
by just using four base poses. Even with only 12 unknowns
to optimize the reconstruction is close to the real 3D data.
Note that the number of variables does not depend on the
number of frames. That means that the computational effort
does not increase much if longer sequences are used as
long as the motion does not change. The reconstruction of
the shown sequence of 450 frames took about 15 seconds,
which is about two magnitudes faster than the non-periodic
reconstruction on the same sequence. For periodic motion
this method is a fast and efficient way for the 3D reconstruc-
tion. Comprehensive results of the periodic reconstruction
on different periodic motions can be seen in Section 4.6.

If bone length constancy is used to additionally regular-
ize the reconstructions we observed no improvement. The
reason is that the periodic assumption is such a strong prior
that an additional regularization term has no effect. Setting
the weight of the bone length regularizer too high results
in a local minimum where the skeleton is not moving at all
and stays in the mean pose.

4.3 Number of base poses
One of the main questions is how many base poses should
be used to achieve a good reconstruction. More base poses
can model more deformation but using too many can cause
unnatural deformation.

It is important to notice that all motions used for training
lie in the space spanned by the base poses. However, not
every linear combination of the base poses defines a correct
human pose. In fact, every base pose allows for some non-
human deformations. Thus the more base poses are used
for the reconstruction, the more distorted the reconstruction
gets. As shown in Figure 8 using 4 to 10 base poses results
in the best reconstructions for periodic and non-periodic
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Fig. 9. Influence on the number of used base poses on the 2D error
using the non-periodic reconstruction (labels: walk, run, jump) and the
periodic reconstruction (label: periodic). The 2D error decreases when
more base poses are used. For better visibility, the errors are normalized
on the 2D error when using 2 base poses. The periodic reconstruction is
done on the same walking sequence as the non-periodic reconstruction.
Computed on CMU MoCap (subject35/walk2/run1, subject13/jump1).

motions. On the test data sets six base poses appear to be
the optimum with respect to the 3D error. If too many base
poses are used the reconstruction deteriorates, whereas the
reprojection error reduces. Comparing Figure 8 to Figure 9
shows the correlation between the 2D error and 3D error for
the same sequences.

4.4 Influence of regularization
Figure 10 shows the influence of the regularizer on the
3D reconstruction for the motion categories walk, run and
jump. For better comparability the error is normalized for
each motion class on the error value without regularization.
Even a small value for the parameter causes a significant
improvement of the 3D reconstruction. In a wide range of
parameter settings the reconstruction is much better with
the regularizer than without it. The selection of values for
the regularization factor is crucial. If the value is too high,
the reconstruction is getting worse. Using a too strong factor
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Fig. 10. Influence of the regularization parameter β on the normalized
3D error. In a wide range, the reconstruction improves (left of dotted line)
if the regularizer is used as compared to optimization without it (β = 0).
Computed on CMU MoCap (subject7/walk1/run1, subject13/jump2).
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Fig. 12. Mean 2D error and standard deviation for periodic and non-
periodic reconstruction of the CMU data set (subjects 7,9,13,16,35).
Evaluated on 57 different sequences including the motion categories
walk, run and jump. Odd steps refer to camera estimation while even
steps refer to pose estimation.

causes the reconstruction to not move at all over time. This is
an expectable behavior in the sense of constant bone lengths,
but unwanted for a realistic 3D reconstruction.

A comparison of the temporal behavior of the bone
lengths of the same sequence with different values for the
regularization factor is shown in Figure 11. The bone lengths
of the periodic reconstruction (first image) are fluctuating
heavily. The second image shows the best non-periodic
reconstruction in terms of the 3D error. The fluctuation is
less than the one of the periodic reconstruction. The max-
imal difference in bone length is about 8mm. Considering
possible noisy measurements, this should be an acceptable
value. On the third image the bone lengths are not changing
much, but the 3D error is larger than in the second.

4.5 Convergence and stability
As stated in Section 3.5 the alternatingly optimized objective
functions are nonlinear and nonconvex for the periodic
and non-periodic case, respectively. Thus we cannot prove
convergence of the proposed algorithm. Instead we demon-
strate it experimentally. Figure 12 shows the mean and stan-
dard deviation of the 2D error during the first 10 iterations
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Fig. 11. Comparison of the temporal behavior of the bone lengths with different regularization factors. First: periodic reconstruction with 3D error of
0.791cm. Second: Non-periodic reconstruction with best 3D error of 0.213cm. Third: Non-periodic reconstruction with very high regularization factor.
Bone lengths are nearly constant over time but the 3D error of 14.553cm is larger. Fourth: Using relative variance for regularization. Computed on
CMU MoCap (subject35/walk1).
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Fig. 13. Mean 3D error and standard deviation of 57 different sequences
of the CMU data set (subjects 7,9,13,16,35) obtained by optimization
with noisy starting values. The noise level is given in percent of body
size of the respective subject.

of 5 different subjects of the CMU MoCap database. An
odd step refers to camera estimation while an even step
refers to pose estimation. All experiments done during the
evaluation (including those in Figure 12) are converging to
a plausible local minimum and the value of the 2D error
decreases in every step.

As all nonconvex optimization algorithms the proposed
algorithm is sensitive to initialization. When initialized with
bad starting values it converges to a bad local minimum. As
described in Section 3.5, initialization is done by the mean
pose of the corresponding motion category which is an ap-
propriate assumption. However, it is reasonable to evaluate
the stability of the algorithm with bad or noisy initializa-
tions. Figure 13 shows the mean and standard deviation of
the 3D error with gaussian noise added onto the starting val-
ues. Up to a noise level of 10% the reconstructions still look
plausible and close to the reconstructions without noise.
Above 10% the 3D reconstructions degenerate to unrealistic
poses.

4.6 Different Motion classes

We trained our algorithm on multiple motion classes includ-
ing periodic (walking, running, jogging) and non-periodic

motions (jump up/forward). Different data sets are used
(CMU MoCap [10], HumanEva [11], KTH Football [1]). The
ground truth for the CMU Mocap and the HumanEva data
sets are generated from marker based motion capture data
of humans performing different actions. The KTH Football
data set contains video sequences with manually labeled
joints. The 3D reconstruction which we use as ground truth
data was computed using a multi camera system. Overall
this data set is more noisy than the other two data sets
and offers a real world scenario. Table 1 shows the 3D
reconstruction error of our different methods on some of the
used motion sequences compared to the results of Gotardo
and Martinez [4] and Bregler et al. [13]. It is noticeable
that the reconstruction results of the jumping sequences are
worse compared to the other sequences. The reason is that
the variance between jumping motions of different persons
is much larger than between walking motions. So a new
(not trained) jumping motion is unsufficiently explained
by the base poses, while every new walking pattern is
very similar to those in the training data. Nevertheless the
reconstructions appear realistic (cf. Figure 23). All results
except the row labeled ”np all” are obtained by training on
the specific motion categories. When training all motions
at once (here we are using walk, run, jog, jump up, jump
forward) to get more general base poses, the results are
getting worse but stay realistic and are still superior to [13]
and [4]. The results of [13] and [4] are obtained with the
source code provided by the authors.

TABLE 1
Average 3D reconstruction error in cm on the CMU dataset (walk, run,
jump), HumanEva walking dataset (HE) and KTH Football dataset. First
row: reconstruction with periodic constraints. Second row: non periodic

reconstruction without bone length regularizer. Third row: Best
reconstruction result achieved with bone length regularizer. Fourth row:
best result when using all motions for training simultaneously. Fifth and

Sixth row: comparison to other approaches.

Method walk run jump HE KTH
periodic 0.784 0.968 - 1.200 0.357
np (β = 0) 0.295 0.661 1.226 0.564 0.292
best 0.183 0.523 1.090 0.423 0.187
np all 0.334 2.805 1.313 - -
[13] 4.557 10.821 8.531 17.824 4.427
[4] 16.359 11.395 17.139 5.714 14.673

Our 3D reconstructions are highly realistic, which was
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Fig. 14. Left: Observation data of a person walking behind a box. The
legs are partly occluded. Right: 3D reconstruction of occluded body
parts using our method.

Fig. 15. Left: During the whole sequence the left hand is occluded by the
body. Right: 3D reconstruction of occluded body parts using our method.

shown by surveying the 3D error. Figures 21, 22, 23, 24
show reconstructed motions taken from the CMU MoCap
database. Figure 21 uses the periodic reconstruction with
only 4 base poses. Figure 22, 23 and 24 are using the non-
periodic approach.

4.7 Occlusions

In realistic scenes, body parts can be occluded. This happens
for example if parts of the observed person are behind an
object, for instance as shown in Figure 14. Another common
case is self-occlusion where one body part occludes another
body part. The integration of occlusions in our algorithm
is simple. Since we are using the frobenius norm of the
reprojection error it is possible to set occluded values to zero
in the observation matrix W2D and the reprojection MΘQ
while using the same objective function (Eq. (18) or Eq. (21))
as in the non occluded case. This equals to canceling the
corresponding equations in the objective function.

Figure 14 shows a person walking (CMU MoCap, sub-
ject7/walk2) behind an artificial box so that the legs cannot
be seen in the input data. Our algorithm is able to recon-
struct a realistic leg motion that is very close to the original
motion. Figure 15 shows the problem of self occlusion. In the
whole sequence, the back arm (shoulder, elbow and hand)
is fully occluded, i.e. 20% of the input data is unknown. On
the right of Figure 15 the back arm is correctly reconstructed
by our method.

For further evaluation of the occlusion handling we ran-
domly delete data points in the input data. Figure 16 shows
the maximal 3D error of the periodic and non-periodic
reconstruction. While the non-periodic reconstruction pro-
duces a high maximal 3D error for occlusions higher than
3%, the periodic reconstruction benefits from the smooth-
ness constraint it puts on the reconstruction and remains
stable for occlusions up to 20%.
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Fig. 16. Comparison of the maximal 3D error of periodic and non-
periodic reconstruction with randomly occluded data points. The pe-
riodic reconstruction appears to be more stable as it puts a smooth-
ness constraint on the reconstruction. Computed on CMU MoCap (sub-
ject35/walk1)
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Fig. 17. Influence of additional noise on periodic and non-periodic recon-
struction. While the 3D error of the non-periodic reconstruction raises,
the error for the periodic reconstruction remains nearly constant.

4.8 Noise stability

To evaluate the stability of our method we put additional
noise on the 2D input data. Figure 17 shows the 3D re-
construction error with respect to the noise level for the
periodic and non-periodic reconstruction. In this case 5%
noise means 5% of the maximal range of motion of the
most moving 2D point. With a very high noise level the
reconstruction is still good. Apparently the periodic recon-
struction appears to be more stable than the non-periodic
reconstruction, because it puts a strong smoothness con-
straint on the weights Θ of the base poses. The result
is still a smooth motion as shown in Figure 18. While
the non-periodic reconstruction (center) is getting unstable
the periodic reconstruction (right) still achieves a realistic
output compared to the ground truth data (left).

4.9 Classification

We also used our proposed method for classification of a
mixed motion. In this example we reconstruct the outdoor
sequence from [31] of a person running and jumping over
an obstacle (cf. Figure 20). For the classification the recon-
struction is done for 10 frames wide sections over the whole
sequence. Figure 19 shows the corresponding 2D error when
using the periodic reconstruction with base poses trained
from the CMU running sequences (35/17-26). The 2D error
increases for non-trained motions, as these can not be recon-
structed with the used base poses. In this example the jump
over the obstacle around frame 30 can be clearly seen. By set-
ting a threshold for the 2D error a classification in running
and non-running motion is possible. For the jumping part
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Fig. 18. Comparison of the weights for the base poses. Left: Ground truth weights. Center: Non-periodic reconstruction with 20% noise (3D error:
1.09cm). Right: Periodic reconstruction with 20% noise (3D error: 1.02cm). Computed on the first 200 frames of CMU MoCap (subject7/walk1).

Fig. 20. Combined running and jumping sequence from [31]. The first two frames are reconstructed using the periodic reconstruction, the others
are using the non-periodic reconstruction. Although the base poses are trained on another data set that does not contain this specific motion, the
reconstruction is not perfect but realistic.
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Fig. 19. 2D error using the periodic reconstruction. The base poses are
trained from the CMU running sequences (35/17-26). Reconstructing
poses belonging to the jumping motion results in a large 2D error.

of the sequence we may therefore switch from the periodic
reconstruction (cf. Section 3.3) to the less constrained non-
periodic algorithm (cf. Section 3.4). Since there is no similar
jumping motion in the other data sets (only jumping with
legs closed or on one leg), we use base poses trained on the
motions walk, run and jump simultaneously as mentioned
in Section 4.6. Although the example sequence is manually
labeled and the base poses are trained on another data set
our method achieves realistic results as shown in Figure 20.

5 CONCLUSION

We presented a new method for the 3D reconstruction of hu-
man motion from monocular image sequences. Using peri-
odic functions to model the weights of the base poses turned

out to be very effective and stable on periodic motion. Re-
construction of non-periodic motion was successfully done
with our new regularization term. In contrast to state of
the art methods for estimation of nonrigid shapes from
monocular image sequences (e.g. [4], [13]) the proposed
regularizations enable us to reconstruct plausible human
motion even under low reconstructibility. We showed the
generality of our approach on multiple common datasets
with different motion types. It even performs well under
occlusions, noise and on the real world data of the KTH
dataset as well as on our outdoor obstacle jump sequence.
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