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Human Pose Estimation from Video and IMUs
Timo von Marcard, Gerard Pons-Moll, and Bodo Rosenhahn

Abstract—In this work, we present an approach to fuse video with sparse orientation data obtained from inertial sensors to improve
and stabilize full-body human motion capture. Even though video data is a strong cue for motion analysis, tracking artifacts occur
frequently due to ambiguities in the images, rapid motions, occlusions or noise. As a complementary data source, inertial sensors allow
for accurate estimation of limb orientations even under fast motions. However, accurate position information cannot be obtained in
continuous operation. Therefore, we propose a hybrid tracker that combines video with a small number of inertial units to compensate
for the drawbacks of each sensor type: on the one hand, we obtain drift-free and accurate position information from video data and, on
the other hand, we obtain accurate limb orientations and good performance under fast motions from inertial sensors. In several
experiments we demonstrate the increased performance and stability of our human motion tracker.

Index Terms—Human Pose Estimation, Motion Capture, Multisensor Fusion, Inertial Sensors, IMU, Animation
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1 INTRODUCTION

I N this paper we deal with the task of human pose tracking, also
known as motion capturing (MoCap) [1]. Compared to com-

mercial marker-based systems, video-based marker-less motion
capture systems are very appealing because they are inexpensive
and non-intrusive. Unfortunately, occlusions, partial observations
and image ambiguities make the problem very hard. Hence, there
is still a gap between the accuracy and reliability of marker-less
systems compared to marker-based solutions.
To this end, we propose a hybrid tracker that combines information
coming from video cameras with information coming from a
small number of inertial sensors. In particular, we use only five
inertial sensors attached at the body extremities of the subject. By
combining both sensor types the tracking performance increases
in both accuracy and stability. The proposed tracking solution is
an inexpensive alternative to commercial marker-based systems to
perform motion capture. Although it is more intrusive than pure
marker-less systems, five miniature IMU sensors do not hamper
the range of motions a subject can perform. This makes it a
very appealing and practical solution for applications where high
accuracy and realism is required, e.g., for movie production and
medical analysis.
Stabilizing pure video-driven MoCap with learned priors is very
common in the literature to compensate for inherent ambiguities.
Using additional a priori knowledge such as familiar pose config-
urations learned from motion capture data helps considerably to
handle more difficult scenarios like partial occlusions, background
clutter, or corrupted image data. There are several ways to employ
such a priori knowledge to human tracking. One option is to learn
the space of plausible human poses and motions [2], [3], [4], [5],
[6], [7], [8]. Another option is to learn a direct mapping from
image features to the pose space [7], [10], [11], [12], [13] or to
mid-level representations of pose [14] through posebits.

• T. von Marcard and B. Rosenhahn are with TNT group at the Leibniz-
University of Hannover, Germany.
E-mail: marcard@tnt.uni-hannover.de

• Gerard Pons-Moll is with the Perceiving Systems Department of the Max
Planck for Intelligent Systems, Tuebingen, Germany.

Manuscript received August 9th, 2015.

(a) (b)

Fig. 1: Tracking result for two selected frames. (a) Video-based
tracker. (b) Our proposed hybrid tracker.

To constrain the high dimensional space of kinematic models,
a major theme of recent research on human tracking has been
dealing with dimensionality reduction [15], [16]. Here, the idea
is that a typical motion pattern like walking should be a rather
simple trajectory in a lower dimensional manifold. Therefore,
prior distributions are learned in this lower dimensional space.
Such methods are believed to generalize well with only little
training data.
Inspired by the same ideas of dimensionality reduction, physical
and illumination models have been recently proposed to constrain
and to represent human motion in a more realistic way [3],
[17], [18], [19]. A current trend of research tries to estimate
shape deformations from images besides the body pose by either
directly deforming the mesh geometry [20] or by a combination
of skeleton-based pose estimation with surface deformation [21].
Recently, inertial sensors (e.g. gyroscopes and accelerometers)
have become popular for human motion analysis. [22] presents
a system to capture full-body motion using only inertial and
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magnetic sensors. While the system in [22] is very appealing
because it does not require cameras for tracking, the subject
has to wear a suit with at least 17 inertial sensors, which might
hamper the movement of the subject. In addition, long preparation
time before recording is needed. Moreover, inertial sensors suffer
from severe drift problems and cannot provide accurate position
information in continuous operation.

1.1 Contributions

Even using learned priors from MoCap data, obtaining limb
orientations from video is a difficult problem. Intuitively, because
of the cylindrical shape of human limbs different limb orientations
project to very similar appearances in the images. These orienta-
tion ambiguities can be easily captured by the inertial sensors but
accurate joint positions in the world space cannot be obtained.
Therefore, we propose to use a small number of sensors (we use
only five) fixed at the body extremities (lower arms, shanks and
waist) as a complementary data source to visual information. On
the one hand, we obtain stable and drift-free accurate position
information from video data and, on the other hand, we obtain
accurate limb orientations from the inertial sensors.
The present work is an extension of our preliminary conference
paper [23] and improves it in several ways:

• We provide additional details on integrating orientation
data to a contour-based video tracker. In Sec. 6.1 we
minimize the squared geodesic distance of estimated and
measured sensor orientations. This leads to three indepen-
dent constraint equations per sensor instead of nine. We
also show how to minimize the squared Frobenius norm
of orientation differences (chordal distance) in Sec. 6.2.

• In order to provide a more thorough evaluation of the
hybrid approach, we recorded a new data set TNT15. We
will make it available for research at [24].

• We present a totally new experimental evaluation. In
Sec. 7.1 we describe the experimental setup and introduce
two error metrics, which measure the tracker performance
in complementary ways. A comparison of the video and
hybrid approach is given in Sec. 7.2.

• Additionally, we investigated different settings of the hy-
brid tracker. In Sec. 7.3 we evaluate the influence of the
hybrid tracker’s weighting parameter λ that balances the
IMUs and video energy terms. In Sec. 7.4 we inspect
the tracking error vs. the number of camera views. We
also evaluate the sensitivity of the tracker to sensor lag in
Sec. 7.5.

• In Sec. 7.6 we evaluate the hybrid tracker approach on the
HumanEva [25] dataset. Ground-truth body poses are used
to synthesize the missing IMU data and the average joint
position error is reported and compared to state-of-the-art
approaches.

2 RELATED WORK

Most works in 3D human pose estimation in computer vision
have focused on obtaining a rough estimate of the skeletal con-
figuration by lifting 2D body part detections [26]. Multiple views
and temporal consistency have also been exploited. For example,
in [27], the authors propose a so-called temporally consistent
3D Pictorial Structures model (3DPS) for multiple human pose

estimation from multiple cameras views. The model extends multi-
view 3D pictorial structures with a temporal consistency between
the inferred poses. The focus of these works is to estimate the pose
for tasks such as human action recognition or scene understanding.
Hence, realism is not a requirement and pose estimates often do
not include 3D limb orientations and suffer from errors such as
motion jitter, foot skating and unbalance. Higher fidelity body
models with an underlying skeleton have also been used for pose
estimation [8], [28]. The use of models with higher degrees of
freedom also comes with more ambiguities which researchers
compensate by using action priors [8] or robust likelihood func-
tions and global optimization schemes [28], [29]. On the other
end of the spectrum, performance capture approaches use a large
number of cameras to capture the full surface geometry of the
body, potentially including clothing [21], [30], [31], [32]. These
approaches are very appealing and produce very realistic results.
However, it is not trivial to transfer the captured surface motion to
new avatars. Furthermore, such approaches could benefit from our
proposed hybrid tracker since limb orientations are very hard to
estimate when they are occluded by clothing, e.g., legs occluded
by a skirt.

The field of human pose estimation has experienced significant
advances with the availability of the inexpensive depth sensor
kinect. A depth sensor significantly simplifies the problem since
many depth ambiguities can be resolved. In the influential paper
of [33] the pose estimation problem is turned into a body part
classification problem. In [34], [35] they extended the approach
of [33] to directly regress correspondences to a model to improve
the accuracy of the predictions. Several other approaches have
been published to tackle the problem of pose and shape estimation
from depth sensors [36], [37], [38], [39], [40]. A survey on pose
estimation using depth images has been presented in [41]. Most
existing works focus on body part detection and pose estimation.
Although depth sensors are very appealing for applications such
as gaming, they do not work very well outdoors and the recording
volume is limited. Furthermore, for both RGB and depth data,
orientation ambiguities are still an issue.

Inertial sensors (IMU) do not suffer from such limitations but
they are intrusive by nature: at least 17 units must be attached
to the body which poses a problem for bio-mechanical studies
and sports sciences. Additionally, IMUs alone fail to measure
accurately translational motion and suffer from drift. Perhaps
surprisingly, not many works can be found that combine inertial
sensors with visual cues. This is maybe due to the fact that IMUs
have been less available in the past. However, inertial sensors
are becoming affordable. In fact, most cellphones come with
integrated IMUs. IMUs alone have been often used for medical
applications, see, e. g., [42] where accelerometer and gyroscope
data is fused. However, their application concentrates on the
estimation of the lower limb orientation in the sagittal plane. An
exception that combines visual and orientation cues is [43], but it
is restricted to the tracking of a single limb (the arm). Moreover,
only a simple red arm band is used as image feature. In [44],
data obtained from few accelerometers is used to retrieve and play
back human motions from a database. In [45], the authors fuse
information from densely placed inertial sensors with a global
position estimate by using a laser range scanner equipped robot
accompanying the tracked person.
In terms of full-body motion tracking with visual and inertial cues,
the most similar approaches to the current work are probably [39]
and [46]. In [39], the authors combine a generative tracker and
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a discriminative tracker by retrieving closest poses in a database.
A visibility model based on depth images (kinect) as well as an
inertial database lookup is used. In [46] IMUs are used to derive
a manifold of poses that satisfy the sensor orientation constraints.
A particle-based optimization scheme is then applied to find the
pose in the manifold, which best matches the image information
obtained from video cameras. The proposed hybrid tracker in
this work is based on fast local optimization, while the approach
in [46] relies on global optimization which is computationally
too expensive for many applications. The authors of [28] have
demonstrated, that fusing global and local optimization methods
can lead to systems which combine the best of both worlds; sim-
ilarly [46] could be combined with the hybrid tracker to recover
from tracking failures. In contrast to [39], our proposed approach
directly optimizes consistency of model and sensor measurements
and is not restricted to motions in a prerecorded inertial database.

3 EXPONENTIAL MAPS FOR RIGID BODY MOTION

To model human joint motion, it is often needed to specify the
axis of rotation of the joint. For example we might want to
specify the motion of the knee joint as a rotation about an axis
perpendicular to the leg and parallel to the hips. Therefore, for our
purpose the axis-angle representation is optimal because rotations
are described as an angle θ and an axis in space ω ∈ R3 where θ
determines the amount of rotation about ω. Unlike quaternions the
axis-angle, requires only 3 parameters θω to describe a rotation.
The axis angle representation does not suffer from gimbal lock
and their singularities occur in a region of parameter space that
can be easily avoided. For a more detailed description we refer the
reader to [47], [48].

3.1 The Exponential Formula
Every rotation R can be written in exponential form in terms of
the axis of rotation ω ∈ R3, s.t. ‖ω‖ = 1 and the angle of rotation
θ as

R = exp(θω̂) (1)

where ω̂ ∈ so(3) is the skew symmetric matrix constructed
from ω. The elements of so(3) are skew symmetric matrices i.e.,
matrices that verify {A ∈ R3×3|A = −AT }. Given the vector
θω = θ[ω1, ω2, ω3]T the skew symmetric matrix is constructed
with the wedge operator ∧ as follows:

θω̂ = θ

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2)

By definition, the multiplication of the matrix ω̂ with a point p
is equivalent to the cross-product of the vector ω with the point.
Hence, the tangential direction of a rotating point is obtained as
ṗ(t) = ω × p(t) = ω̂p(t), which is a differential equation that
can be integrated to obtain the the exponential formula in Eq. (1).

The exponential map of a matrix A ∈ R3×3 is analogous to
the exponential used for real numbers a ∈ R. In particular the
Taylor expansion of the exponential has the same form:

exp (θω̂) = e(θω̂) = I + θω̂ +
θ2

2!
ω̂2 +

θ3

3!
ω̂3 + . . . (3)

Exploiting the fact that (θω̂) is screw symmetric, we can easily
compute the exponential of the matrix ω̂ in closed form using the
Rodriguez formula:

exp(θω̂) = I + ω̂ sin(θ) + ω̂2(1− cos(θ)) (4)

where only the square of the matrix ω̂ and sine and cosine of
real numbers have to be computed. Note that this formula allows
us to reconstruct the rotation matrix from the angle θ and the
axis of rotation ω by simple operations and this is probably the
main justification of using the axis-angle representation at all. The
exponential map formulation can be extended to represent rigid
body motions, namely any motion composed by a rotation R and
a translation t. This is done by extending the parameters θω with
θv ∈ R3 which is related to the translation along the axis of
rotation and the location of the axis. These six parameters form
the twist coordinates θξ = θ(v1, v2, v3, ω1, ω2, ω3) of a twist.
Analogous to Eq. (1), any rigid motion G ∈ R4×4 can be written
in exponential form as:

G(θ, ω) =

[
R3×3 t3×1

01×3 1

]
= exp(θξ̂) (5)

where the 4 × 4 matrix θξ̂ ∈ se(3) is the twist action and is a
generalization of the screw symmetric matrix θω̂ of Eq. (2). The
twist action is constructed from the twist coordinates θξ ∈ R6

using the wedge operator ∧

[θξ]∧ = θξ̂ = θ


0 −ω3 ω2 v1

ω3 0 −ω1 v2

−ω2 ω1 0 v3

0 0 0 0

 (6)

and its exponential can be computed using the following formula

exp(θξ̂) =

[
exp(θω̂) (I − exp(θω̂))(ω × v + ωωT vθ)
01×3 1

]
(7)

with exp(θω̂) computed by using the Rodriguez formula Eq. (4)
as explained before.

3.2 Pose Parameterization

The dynamics of the subject are modelled by a kinematic chain
F , which describes the motion constraints of an articulated rigid
body such as the human skeleton. A kinematic chain models
the motion of a body segment as the motion of the previous
body segment in the chain and an angular rotation around a joint
axis. Specifically, the kinematic chain is defined with a 6 DoF
(degree of freedom) root joint representing the global rigid body
motion and a set of 1 DoF revolute joints describing the angular
motion of the limbs. Higher DoF joints like hips or shoulders are
represented by concatenating two or three 1 DoF revolute joints;
for a comparison of balljoint parameterizations see [49].
The root joint is expressed as a twist of the form θξ with the
rotation axis orientation, location, and angle as free parameters.
Revolute joints are expressed as special twists with no pitch of
the from θjξj with known ξj (the location and orientation of the
rotation axis as part of the model representation). Therefore, the
full configuration of the kinematic chain is completely defined by
a (6 + n) vector of free parameters

x := (θξ, θ1, . . . , θn) (8)

similar to [50]. Now, for a given point p ∈ R3 on the kinematic
chain, we define J (p) ⊆ {1, . . . , n} to be the ordered set that
encodes the joint transformations influencing p. Let p̄s = p

1
be the homogeneous coordinate of p and denote Pc() as the
associated projection with Pc(p̄) = p. Then, the transformation
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Fig. 2: General tracking procedure of the video tracker, using silhouettes as image features. Multi-view silhouettes are obtained by
background subtraction. In parallel, the mesh model is adapted to the current pose and projected to the respective camera views. One
seeks for the pose parameters that best explain the image evidence.

of a point p using the kinematic chain F(x;p) and a parameter
vector x is defined by

F(x;p) = Pc
(
GTB(x)p̄s(0)

)
=

Pc

exp(θξ̂)
∏

j∈J (x)

exp(θj ξ̂j)

 p̄s(0)

 . (9)

Here, F(x;p) : R3 → R3 is the function representing the
total rigid body motion GTB(x) of the segment in the chain
where p belongs. Eq. (9) is commonly known as the product of
exponentials formula [47], denoted as F(x;p).

4 VIDEO-BASED TRACKER

The input of our video tracker consists of a rigid surface mesh
of the actor obtained from a laser scanner and multi-view images
obtained by a set of calibrated and sychronized RGB-cameras.
In order to relate the surface model to the human’s images we
find correspondences between the 3D surface vertices and the 2D
image contours obtained with background subtraction, see Fig. 2.
We first collect 2D-2D correspondences by matching the projected
surface silhouette with the background subtracted image contour.
Thereby, we obtain a collection of 2D-3D correspondences since
we know the 3D counterparts of the projected 2D points of the
silhouette. In the experiments we only use the silhouettes as
image features. We then minimize the distance ei between the
transformed 3D points F(x;pi(0)) of the model and the projec-
tion rays defined by the 2D contour points pi and the respective
camera center. This gives us a point-to-line constraint for each
correspondence. Defining Li = (ni,mi) as the 3D Plücker line
with unit direction ni and moment mi of the corresponding 2D
point ri = [xi, yi], the point to line distance residual ei ∈ R3 can
be expressed as

ei = F(x;pi)× ni −mi . (10)

Similar to Bregler et al. [51] we now linearize the equation by
using exp(θξ̂) =

∑∞
k=0

(θξ̂)k

k! . With I as identity matrix, this
results in

(I + ∆ξ +
∑

j∈J (x)

∆θj ξ̂′j)) pi(x))× ni −mi = 0 . (11)

where ξ̂′j is the j-th twist in the chain transformed to the current
pose configuration. Having N correspondences, the energy we
minimize Evideo is the sum of squared point-to-line distances ei

arg min
x
Evideo(x) =

N∑
i=1

‖ei‖2 (12)

=
N∑
i=1

‖F(x;pi)× ni −mi‖2 (13)

which can be locally optimized. After linearization, Eq. (13) can
be re-ordered into an equation of the form Jvideo(x)∆x = evideo.
Collecting a set of such equations leads to an over-determined
system of equations, which can be solved using numerical methods
like the Householder algorithm. The pose parameters are then
updated as xk+1 = xk + ∆x. The Rodriguez formula can be
applied to reconstruct the group action g from the estimated twists
θjξj . Then, the 3D points can be transformed and the process is
iterated until convergence.

5 IMUS

An Inertial Measurement Unit or IMU is an electronic device
that measures orientation and acceleration, using a combination of
accelerometers and gyroscopes, sometimes also magnetometers.
IMUs are very appealing because they provide a direct 3D
measurement in contrast to images where the 3D information
needs to be hallucinated. Furthermore, IMUs do not suffer from
occlusions/self-occlusions and are not restricted to a designated
recording volume. However, they have some limitations:
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Fig. 3: Global frames: tracking frame FT and inertial frame F I .
Local frame: sensor frame FS .

• Wearing many IMU is intrusive for the subject.
• IMUs suffer from drift in continuous operation. Sensor

biases are constantly estimated and this is difficult, espe-
cially if the local magnetic field is distorted by ferromag-
netic material in the surrounding.

• No positional measurement is directly available from the
IMU. One could in principle derive position from the
acceleration measurements but we have found this to be
numerically unstable.

• The orientation data provided by IMUs suffers from lag.
That is due to the fact that orientation data is obtained as
the output of a Kalman filter that integrates acceleration,
magnetometer and gyroscope information together. This is
lag is specially problematic during fast motions.

Hence, we introduce a hybrid tracker that fuses information
coming from a small set of IMUs (we use 5) and information
coming from video cameras to compensate for the drawbacks of
each sensor type.
The IMU measurements are taken with respect to a global inertial
coordinate frame F I , which is commonly defined by gravity and
magnetic north direction. The video tracking coordinate frame FT

is defined by a calibration cube placed in the recording volume
and usually differs from the inertial frame. Therefore, in order to
be able to integrate the orientation data from the inertial sensors
into our tracking system, we must determine the rotational offset
RTI : F I → FT between both coordinate systems, see Fig. 3.
Then, we can easily transform the IMU data according to

RTS(t) = RTIRIS(t) , (14)

such that they define a map from the local sensor frame FS to the
tracking frame FT .

6 HYBRID TRACKER

The input of our hybrid tracker is identical to the video tracker,
but extended with global orientation measurements of the IMUs.
We define a joint energy Ehybrid that measures the consistency
between pose estimates with measurements coming from video
and inertial sensors:

arg min
x
Ehybrid(x) = Evideo(x) + λEsens(x) (15)

where Evideo(x) is the energy cost corresponding to the video
measurements defined in Eq. 13 and λEsens(x) is the cost associ-
ated with the IMU orientation measurements. To have a balanced

Multi-view
images

Model

IMUs

Silhouettes

Synthesized
silhouettes

Synthesized
orientations

Orientations

Contour
consistency

Orientation
consistency

Hybrid
energy

Inputs Features Energy terms

Fig. 4: Sketch of the hybrid tracker pipeline. Silhouette and orien-
tation features are obtained from the inputs and their consistencies
are combined in a hybrid energy term. We search for the model
pose, which results in the minimal hybrid energy.

energy we normalize the individual terms in the range of [0, 1]. As
we will see in Sec.6.1, Esens(x) can also be expressed as a sum
of squared errors. This allows us to use numerical optimization
techniques such Newton-Raphson or Levenberg-Marquardt. Let
evideo : RD 7→ R3N be the vector valued function of residuals of
image correspondences and esens : RD 7→ R3Ns the function of
orientation residuals, where Ns is the number of available sensors.
Now, we can express the energy in Eq. (15) as

arg min
x

eThybrid(x)ehybrid(x) =

eTvideo(x)evideo(x) +
√
λeTsens(x)

√
λesens(x). (16)

Eq. (16) is then iteratively linearized and the step ∆x is found by
solving the following linear system[

Jvideo(x)√
λJsens(x)

]
∆x =

[
evideo(x)√
λ esens(x)

]
. (17)

The pose parameters are then updated as x(k) = x(k−1) + ∆x.
The term corresponding to the video data is explained in the
previous section. The term for the inertial sensors is explained
in Sec. 6.1. In Fig. 4 we summarize the main ingredients of the
hybrid tracker.

6.1 Geodesic Distance Minimization

In this section we explain how to integrate the orientation data into
the video-based tracker described earlier. In particular, we derive
the linearization of a cost function that accounts for orientation
consistency. After linearization this can be integrated into a big
linear system according to Eq. (17).
In order to relate the orientation data to the differential twist
parameters xt of our model, we will compare the ground-truth
orientations RTS(t) of each of the sensors with the estimated
sensor orientations from the tracking procedure R̂TS(xt), which
we will denote as tracking orientation. For the sake of clarity we
will drop the time subindex xt and just write R̂TS(x), and will
consider an energy for a single sensor. We define the estimation
error esens in terms of the screw coordinates ωrel(x) ∈ R3 of the
relative rotation between tracking and ground-truth orientation

esens(x) = ωrel(x) = log(RTS(t)R̂TS(x)−1), (18)
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Fig. 5: Integration of orientation data into the video-based tracker.
Ground-truth orientation: clockwise down path from FS at time t
to FT . Tracking orientation: anti-clockwise upper path from FS

at time t to FT .

see Sec. 3. The energy cost related to orientation consistencyEsens

can now be expressed as

arg min
x
Esens(x) = ‖esens(x)‖2. (19)

Note that Esens corresponds to the squared geodesic distance
between RTS(t) and R̂TS(x).
We can linearize Eq. (19) and reformulate our objective function
in terms of an optimal pose variation ∆x

arg min
∆x
‖ωrel(x) +

∆ωrel(x)

∆x
∆x‖2. (20)

The expression ∆ωrel(x)
∆x maps an increment in parameter space to

the equivalent screw of the associated rigid motion. It corresponds
to the Jacobian Jori : RD 7→ so(3) of the orientation forward
kinematics map F : RD 7→ SO(3). Since Eq. (20) is essentially
a least squares problem, the optimal step can be found by solving
the following linear equations

Jori∆x = −ωrel(x). (21)

Thus, our sensor estimation error Jacobian Jsens is simply the
Jacobian of the forward kinematic map Jori. We can now setup
those equations for all orientation sensors and plug them into the
linear system defined in Eq. (17).
However, we need to define the ground-truth orientations RTS(t)
and the estimated sensor orientations R̂TS(x). Recall from Sec. 5
that the sensor orientation data is given as a rotation matrix
RTS(t) : FS → FT defining the transformation from the local
sensor frame FS to the global tracking frame FT . In order to
derive an expression for R̂TS(x), we introduce the body frame
FB (the local frame of a segment in the chain, e.g. the leg). As
depicted in Fig. 5, the tracking orientation can be constructed
by the concatenated transformation RBS(t) and RTB(x), i.e.
R̂TS(x) = RTB(x)RBS . The first transformation defines the
mapping from the sensor frame to the body frame RBS(t) :
FS → FB . The second term describes the total accumulated
motion of a body segment at time t, i.e., R(x) : FB → FT . As
the sensor is rigidly attached to the body segment, this mapping

Fig. 6: Alternative interpretation of integrating orientation data
into the video-based tracker. In comparison to Fig. 5 the tracking
orientation path is extended by a local infinitesimal rotation
RB(∆x) of the body frame FB .

remains constant during tracking and we can compute it in the first
frame

RBS = RTB(0)−1RTS(0), (22)

where RTB(0) is the configuration of the body part B in the first
frame where the sensor is attached.

6.2 Chordal Distance Minimization
The previous derivation allows us to integrate linearized equations
associated to orientation consistency to the equations correspond-
ing to the cost associated with the image evidence. It is however
interesting to derive alternative equations from a more geometric
point of view.
Consider the local infinitesimal rotation RB(∆x) of frame FB ,
see Fig. 6. RB(∆x) is defined in the body frame and represents
the transformation from FB(x + ∆x) to FB(x). The tracking
orientation R̂TS is now given by the longer path in Fig. 6,

FS
RBS

=⇒ FB(x + ∆x)
RB

=⇒ FBx+∆x

RTB(x)
=⇒ FT . In We can

make this transformation matrix match the ground-truth orienta-
tion RTS by minimizing the geodesic distance between them.
This leads to exactly the same set of equations as in Eq. 21.
However, in [23] the squared chordal distance was minimised:

arg min
∆x

∥∥∥RTB(x)RB(∆x)RBS −RTS(t)
∥∥∥2

F
. (23)

The rotation RB(x) defined in the body frame is related to
the rotation R(x) defined in the tracking frame by the adjoint
transformation AdR−1(x),

RB(∆x) = RTB(x)−1R(∆x)RTB(x) . (24)

Substituting RB(x) by its expression in (24) it simplifies to

arg min
∆x

∥∥∥R(∆x)RTB(x)RBS −RTS(t)
∥∥∥2

F
. (25)

In [23], we have shown how to linearize Eq. (25) and integrated
it into the linear system defined in Eq. (17). Nonetheless, it
is interesting to take a closer look at the left term of Eq.
(25). Substituting the rotational displacement RBS in Eq. (25)
by its expression in Eq. (22) RTB(0)−1RTS(0), and writing
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RTB(x) =
1∏

j=t−1

R(j)RTB(0) in terms of instantaneous ro-

tations we obtain

R(∆x)(
1∏

j=t−1

R(j))RTS(0) . (26)

This last equation has a very nice interpretation because the

columns of the matrix
1∏

j=t−1

R(j))RTS(0) are simply the coor-

dinates of the sensor axis in the first frame (columns of RTS(0)),
rotated by the accumulated tracking motion from the first frame
forward (i.e. not including the initialization motion in frame 0).
This last result was very much expected and the interpretation
is the following: if we have our rotation matrices defined in a
reference frame FT , we can just take the sensor axes in global
coordinates in the first frame (columns of RTS(0)) and rotate
them at every frame by the instantaneous rotational motions
of the tracking. This will result in the estimated sensor axes
in world coordinates, which is exactly the tracking orientation
defined earlier in this section. Therefore, the problem can be
simplified to additional 3D-vector to 3D-vector equations which
can be very conveniently integrated in our twist formulation. Being
r̂TS1 (x), r̂TS2 (x), r̂TS3 (x) the tracking orientation basis axes at
configuration x, and x(t),y(t), z(t) ground-truth orientation
basis axes in the current frame t, the constraint equations are

R(∆x)r̂TSi (x) = rTSi , i = 1 . . . 3 (27)

which can be linearized similarly as we did in the video-based
tracker with image points to mesh points correspondences (2D-
point to 3D-point). The difference now is that since we rotate
vectors, only the rotational component of the twists is needed.
Each additional sensor results in an additional nine equations in
the linear systemI + ∆ω̂ +

∑
j∈J (x)

∆θjω̂
′
j

 r̂TSi (x) = rTSi (t), i = 1 . . . 3

(28)
which depends only on θjω̂j . The last equations can more conve-
niently be expressed in matrix form as Jvec(x; r̂TS)∆x = evec,i

for i = {1 . . . 3} . Here Jvec : RD 7→ R3 has almost the
same structure as the positional pose Jacobian Jvideo of the video
tracker except that it does not depend on the translational motion
nor the location of the joints. This implies that we can integrate
the sensor information into the tracking system independently of
the initial sensor orientation and location at the body limb. Note
that Jvec takes a vector r as input as opposed to a point in Jvideo.
Also, note the difference between Jvec which are the derivatives
of a rotating vector r and is therefore local, and Jori which maps
to the tangential space so(3).
Minimizing the chordal distance Eq. (28) leads to nine equa-
tions for each sensor. In the previous section we minimized the
geodesic distance, where the rotational error is defined by screw
coordinates producing only three equations. Hence, there is a dis-
crepancy of six equations. According to Euler’s rotation theorem
an orientation R ∈ SO(3) can be expressed by a minimum
of three real parameters. Thus, the geodesic error term operates
on the minimal representation, while minimizing the Frobenius
norm produces some additional dependent equations. Indeed, the
three 3D-vector to 3D-vector correspondences are related to the
respective coordinate axes, meaning they have to be orthogonal.

This relationship is covered by the six dependent equations. In the
end, both methods minimize a distance metric of a relative rotation
and lead to equivalent results but we minimize geodesic distance
because it is more compact and efficient.
To conclude, we have derived the linearized equations for orien-
tation consistency in terms of the geodesic distance (Sec. 6.1) and
motivated the sensor integration from a more geometrical point of
view within this section.

7 EXPERIMENTS

In this section we evaluate our sensor fusion approach by com-
paring the video-based tracker with our proposed hybrid tracker.
Learning-based stabilization methods or joint angle limits can also
be integrated into the video-based tracker. However, we did not
include further constraints to clearly demonstrate the influence of
incorporating inertial data.
For our experimental evaluation we need inertial sensor data,
which is missing in publicly available benchmarks for video-
based trackers (e.g. HumanEva [25], Human3.6M [52]). In the
preliminary work of this paper [23], the MPI08 dataset [53] was
used to evaluate the hybrid trackers performance. This dataset
provides inertial data of 5 IMUs along with video data. In order to
expand our experimental evaluation and provide enhanced error
metrics, we have recorded a new dataset, TNT15 [24], which
includes data of 10 IMUs and 8 synchronized RGB-cameras.
Similar to [46], 5 IMU sensors were used for tracking and the
residual 5 sensors were utilized for an independent validation
measure. Additionally, we refrained from using a monochrome
background cover as in [53] and recorded in a normal office room
situation. This generates noisier silhouettes, as it becomes more
difficult to clearly separate foreground from background. For the
video-based tracker, noisy silhouettes are very demanding, since
the local optimization scheme gets stuck in local minima more
often. However, this semi-controlled scenarios where we think
incorporating sparse inertial sensor data is ideal to enable high-
quality, marker-less motion tracking with a fast, local optimization
scheme.

7.1 Experimental Setup

7.1.1 TNT15 Dataset
The TNT15 dataset consists of synchronized data streams from 8
RGB-cameras and 10 IMUs. Four subjects perform five activities,
namely walking, running on the spot, rotating arms, jumping
and punching. The walking sequence consists of simple loco-
motion along a path with a 180◦ turn on the spot. In running
on the spot the actors were asked to run on the spot at three
different velocities. More complex motions are executed in the
residual sequences. The rotating arms sequence contains forward,
backward, synchronized and unsynchronized arm rotations, while
jumping covers jumping jacks and skiing exercises. The punching
sequence includes some dynamic boxing motions. In total, the
dataset contains more than 4:30 minutes of video data, which
amounts to almost 13 thousand frames at a frame rate of 50 Hz.
Multi-view video data was captured by a set of 8 synchronized
RGB-video cameras at a resolution of 800×600 px. In order to
generate silhouettes we used a background subtraction method
based on a pixel-wise Gaussian model, similar to [54].
The orientation data was recorded by 10 IMUs, which have been
strapped to shanks, thighs, upper arms, lower arms, waist and
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Fig. 7: Sensor placement: 10 sensors are strapped to body extrem-
ities (shank, thigh, forearm, upper arm), chest and waist.

chest. Fig. 7 illustrates the sensor placement. As stated above,
the set of sensors is divided into tracking and validation sensors.
Sensors at shanks, lower arms and waist have been selected for
tracking, while the orientation measurements at thigh, upper arms
and chest are utilized for validation.

7.1.2 Technical and Recording Setup
We have used the wireless MTw system provided by XSens [55] to
capture inertial sensor data. The MTw system consists of a receiver
and multiple MTw motion trackers. Each MTw motion tracker
contains a three-axis gyroscope, accelerometer and magnetometer
and has the dimensions 34.5x57.8x14.5mm at a weight of 27g. The
sensory output is transmitted to the receiver and then fused using
a proprietary algorithm to provide a 3D orientation. Orientation
accuracy is specified to be smaller than 1◦ with an angular
resolution of 0.05◦1. In our experiments we are using 10 MTw
units and record at a frame-rate of 50 Hz. The MTw units provide
orientation data relative to a static global inertial frame F I , which
is computed internally in each of the sensor units at the initial
static position. It is defined as follows: the Z-axis is the negative
direction of gravity measured by the internal accelerometer. The
X-axis is the direction of the magnetic north pole measured by the
magnetometer. Finally, the Y -axis is defined by the cross product
Z ×X . For each sensor the absolute orientation data is provided
by a stream of quaternions that define, at every frame, the map or
coordinate transformation from the local sensor coordinate system
to the global one RIS(t) : FS ⇒ F I , see Sec. 5. In order
to integrate the sensor orientation measurements in our tracking
system, we have to determine the mapping between the inertial and
tracking coordinate systems. Since the Y -axis of the calibration
cube for the tracking frame is perpendicular to the ground, the Y -
axis of the tracking frame and the Z-axis of the inertial frame are
aligned. Therefore, RTI is a one parametric planar rotation that
can be estimated beforehand using a calibration sequence [56].
This calibration step can be avoided if the tracking frame coincides
with the inertial frame, which is easily achieved by aligning the
sensors with the tracking frame and performing a heading reset.
This action basically rotates the inertial frame such that its X-axis
is adjusted to the MTw units X-axis. To synchronize the cameras
with the IMU measurements, the actors were asked to perform

1. Specifications provided by the manufacturer

a foot stamp at the beginning of every sequence which is easily
detected in the camera images and IMU acceleration data.

7.1.3 Methodology
In order to evaluate our hybrid tracker performance we consider
two frame-wise error metrics. First we investigate the angular error
dang of our five validation IMUs w.r.t the corresponding bone
orientations. We define dang as the geodesic distance between the
ground-truth and tracking orientations, RTS and R̂TS , according
to

dang(R
TS , R̂TS) = ‖ log(RTS(R̂TS)−1)‖. (29)

However, as the validation sensor error only measures orientation
consistency, it is not sensitive to erroneous limb positions. Thus,
we consider a second error metric and based on silhouette overlap
between our projected model estimate and the image silhouette. It
measures how well the estimate explains the video observations.
Specifically, we define dxor as the ratio of pixels in the XORed
image to the number of pixels in the disjunct image

dxor(S
video, Smodel) =

1

K

K∑
j=1

Svideoj ⊕ Smodelj

Svideoj ∨ Smodelj

, (30)

where Svideoj and Smodelj are the binary silhouette images for
every camera view j. It is defined in the range of [0, 1], i.e. a
XOR error of dxor = 0 means the silhouettes are identical and
dxor = 1 indicates no overlap at all.
Our error metrics are different from the commonly used joint
position error in motion capture experiments. If MoCap data is
available one typically evaluates the euclidean distances of virtual
markers corresponding to joint positions and the estimated joint
positions of the motion tracker. However, this defines the state of
a bone by two points in space, thus a rotational degree of freedom
is not captured. Ideally, a metric for evaluating the human body
pose should consider both joint position and joint orientation, i.e.
the rigid motion of each bone of the human skeleton. MoCap
data is not available for our experiments, thus we alternatively
evaluate the estimated pose by measuring the bone orientations
corresponding to the validation IMUs and the silhouette overlap
error. Several experiments were carried out to investigate the
tracker’s performance. For every experiment we carefully analyse
both error terms, the angular error dang and XOR error dxor , and
define the total tracking error as their concurrent combination.

7.2 Tracking Error Analysis
In this section we investigate the tracking error of the video
and hybrid tracker for a fixed parameter setting. The hybrid
tracker weighting parameter λ was set to 1.0, which implies equal
weighting of silhouette and sensor terms of the objective function,
see Eq. (15). First, we present the outcome of two exemplary
sequences and then show results for the complete database.

Fig. 8 shows the frame-wise tracking error for a walking
sequence. The lower graph shows the orientation error curve,
containing the average dang for all validation sensors. For the
hybrid tracker, the orientation error stays below 20◦ for the
whole sequence. In contrast, the video tracker shows some large
deviations from ground-truth between frames 160 and 370. A
manual inspection revealed that the right upper arm was partially
flipped about 180 degrees, see Fig. 1(a). Interestingly, this is
almost invisible in the XOR error curve, shown in the upper graph
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Fig. 8: Frame-wise XOR and orientation error for a walking
sequence. The hybrid tracker (blue) performs well for the entire
sequence. The video tracker (red) shows some large orientation
errors between frames 160 and 370. Interestingly, this is almost
invisible in the XOR error curve.
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Fig. 9: Frame-wise XOR and orientation error for a dynamic
punching sequence. The video tracker (red) struggles to track
the complex motion and cannot recover from frame 210 on. The
hybrid tracker (blue) performs better with respect to both error
metrics.

of Fig. 8. This gross error would also be almost imperceptible in
standard joint error metrics used for example in HumanEva. This
further demonstrates that the error metrics used in human pose
estimation are incomplete and that orientation flips result in similar
visual cues. Nevertheless, the hybrid tracker performs better even
on this video based metric. Another example sequence is shown
in Fig. 9. It depicts the tracking error for a dynamic punching
sequence. The angular error curve indicates that the video tracker
struggles to track the complex motion which starts at frame 80.
From frame 210 on, the average orientation error increases to
approximately 60◦ and remains in this region for the rest of the
sequence. The tracking failure is also visible in the XOR error

TABLE 1: Mean tracking error values µ and standard deviations
σ for video-based and hybrid tracker for all sequences of the
database.

approach µxor σxor µang[deg] σang[deg]
video 0.209 0.056 30.17 42.38
hybrid 0.192 0.044 15.71 19.19

TABLE 2: Mean angular error µang[deg] of the validation sensors
attached to thighs, chest and upper arms for the video-based and
hybrid tracker for all sequences of the database.

lThigh rThigh chest lUArm rUArm
video tracker 19.12 12.36 11.97 61.03 46.28
hybrid tracker 8.64 6.75 6.88 27.30 28.96

curve. The hybrid tracker in contrast performs better with respect
to both error metrics.
In both example sequences the hybrid approach performed better
and successfully resolved visual ambiguities, which caused the
video tracker to get stuck in undesired local minima or loose track
completely. To evaluate the performance of our hybrid tracker on
more sequences, we computed the tracking error for all sequences
of the data set. We denote the mean and standard deviation of
the XOR error as µxor and σxor and the angular error µang and
σang , respectively. As depicted in Tab. 1, the mean angular error
got almost halved to 15.71◦. Additionally, the XOR error has been
reduced from 0.209 to 0.192, which shows that the orientation cues
at the extremities propagate up the skeleton resulting in better pose
estimates. The improved tracking results are also supported by
the respective standard deviations. We conclude this section with
the remark, that the mean tracking errors might be higher as one
expects. For the XOR error this is due to the imperfect silhouettes.
As we have recorded the data in a normal office room situation,
background subtraction generates artifacts in the silhouettes, i.e
holes in the foreground regions and background pixels, which
have been incorrectly labeled as foreground. Such an artifact is
visible in the left silhouette in Fig. 2. In order to explore the main
components of the mean angular error, we depict the respective
terms for each validation sensor in Tab. 2. We immediately see
that the validation sensors placed at the upper arms obtain a much
higher error than the ones placed at thighs and chest. The reason
for this imbalance is twofold. First, the data set contains very
difficult arm motions, which are difficult to track. Second, given
the tracking orientation at the lower arms, some joint angles are
simply not observable. If we assume an extended elbow joint, a
rotation of the lower arm can be caused by a rotation in the elbow
or in the shoulder. Besides, the skeletal structure of the shoulder
and arms is very complex and thus difficult to model accurately.
However, in comparison to the video tracker, the hybrid tracker
reduced the angular error of the upper arm validation sensors by
approximately one half.

7.3 Tracking Error vs. Feature Weighting
In this section we investigate how the weighting parameter λ
influences the tracking error. Several weighting factors have been
tested and their tracking error statistics are summarized in Tab. 3.
Additionally, the respective mean XOR errors and mean angular
errors are visualized in Fig. 10.
In comparison to the video tracker, even a small weighting
parameter of λ = 0.1 improves the tracking and reduces the
average XOR error by 0.04 and mean angular error by 7.32◦. In
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TABLE 3: Mean tracking error for varying weighting of sensor
cues, computed over all sequences of the database.

approach µxor σxor µang[deg] σang[deg]
video (λ = 0.0) 0.209 0.056 30.17 42.38
hybrid (λ = 0.1) 0.205 0.052 22.85 32.54
hybrid (λ = 0.5) 0.197 0.047 16.57 21.23
hybrid (λ = 1.0) 0.192 0.044 15.71 19.19
hybrid (λ = 2.0) 0.196 0.046 15.46 19.53
hybrid (λ = 3.0) 0.202 0.047 15.41 19.54
hybrid (λ = 5.0) 0.211 0.051 15.98 21.50
hybrid (λ = 10.0) 0.223 0.057 16.42 22.15
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Fig. 10: Mean XOR error (red) and mean angular error (blue) for
different weighting parameter λ of the hybrid tracker. The dashed
lines show the respective error levels of the video tracker.

terms of the XOR error, the best values are obtained for moderate
weighting values between 0.5 and 2.0, reaching its minimum of
0.192 at λ = 1.0. For larger weighting factors the XOR error
increases almost proportionally. Thus, forcing higher penalties on
orientation deviations does not necessarily help to resolve visual
ambiguities. The objective is altered in a way that the tracker finds
a local minimum which might not be in accordance to the visual
cues. This illustrates why it is important to consider both error
metrics to really judge the tracker’s performance.
The angular error shows a different behavior. For small weighting
parameters, it drops from 30.17◦ for the video tracker (λ = 0.0) to
16.57◦ for the hybrid tracker with a weighting parameter λ = 0.5.
Then the angular error decreases at a slower rate to its minimum
of 15.41◦ at λ = 3.0. A further increase of λ results in slightly
growing angular errors. At first this might be counter-intuitive, but
we only penalize orientation deviations of the tracking sensors. A
too large weight makes the tracker ignore the video cues producing
un-plausible poses to match the sensor orientations.
We defined the optimal weighting parameter to be the one that
minimizes the XOR error, which happens for a weighting factor
of λ = 1.0. This value has a slightly higher angular error
compared to higher weighting factors, but we think the difference
is reasonably small.
In general, the value of the weighting parameter depends heavily
on how well the IMU readings represent the truth limb orienta-
tions. Sensor readings are corrupted by noise and rigidly attaching
them to the bones is simply not possible. Thus, the ideal weighting
parameter varies depending on the motion to be tracked.

7.4 Tracking Error vs. Number of Views

So far we investigated how the trackers perform using 8 cameras
and 5 IMUs. In this section, we compare tracking results for
reduced sets of camera views. Using only a subset of camera views
has the effect that ambiguities in the silhouettes increase and local
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Fig. 11: Sketch of the camera setup. Eight cameras (IDs 0 to 7)
are positioned around the recording volume.

TABLE 4: Tracking camera list for three experiments with a
designated scenario. Cameras that have been used for tracking
during the scenarios are marked with a X.

Camera ID 0 1 2 3 4 5 6 7
6 cameras X X X X X X
4 cameras X X X X
2 cameras X X

minima in the video-based energy term become more prevalent.
Especially within those scenarios we expect adding inertial cues
improves the tracking.
In order to compare the results to the previous experiments we
compute the XOR error on the full set of available camera views
and use only a subset for tracking. The weighting parameter λ
of the hybrid tracker is fixed to 1.0 for all experiments in this
section. In a first experiment we evaluate the tracking performance
for three distinct camera setups with 6, 4 and 2 cameras. To
distinguish the different setups, we denote the video and hybrid
tracker as videoxc and hybridxc, where x will be replaced by the
quantity of cameras used for tracking. Fig. 11 shows the rough
camera placements around the recording volume, where each
camera is denoted with a circle, filled with its associated ID. For
the 6 camera setup we removed cameras with ID 0 and 4 from the
set of available camera views. Excluding those cameras removes
an entire viewing direction on the scene, as they are arranged at
opposite positions. For the four camera setup we remove half of
the cameras and used only cameras with ID 0, 1, 2 and 3 for
tracking. This setup would have the advantage of requiring less
space than the eight camera setup. We also evaluated the tracker
performance using only two cameras for tracking. We have chosen
camera 0 and 2 for this scenario, as they have orthogonal viewing
directions to the scene, which provides most information for a
stereo setup. See Tab. 4, for a summary of which cameras are used
for tracking in the respective setups. In Tab. 5 the mean tracking
errors and associated standard deviations are summarized for the
respective camera setups. The tracking error of the video tracker
deteriorates by reducing the number of available camera views.
In contrast, the hybrid tracker is more robust to escalating visual
ambiguities and the tracking error increases at a far slower rate.
Especially video6c shows inferior tracking results, though only
two cameras have been removed from the tracking subset. Com-
pared to the full camera setup, the mean XOR error rises by 0.099
and the mean angular error almost doubles. Obviously, the missing
camera views provide vital information to the video tracker. In
fact, inferring limb positions and orientations orthogonal to the
viewing direction of the missing cameras is hampered. As a result
it gets more difficult to determine, whether limbs are oriented
forward or away from the residual camera views. However, the



11

TABLE 5: Tracking error statistics for camera setups shown in
Tab. 4.

approach µxor σxor µang[deg] σang[deg]
video8c 0.209 0.056 30.17 42.38
hybrid8c 0.192 0.044 15.71 19.19
video6c 0.308 0.139 54.64 56.16
hybrid6c 0.214 0.059 18.62 26.31
video4c 0.269 0.103 41.58 49.14
hybrid4c 0.219 0.057 17.56 22.70
video2c 0.360 0.138 58.68 54.76
hybrid2c 0.258 0.079 20.63 26.44
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Fig. 12: Average tracking error of the video tracker (red) and
hybrid tracker (blue) for varying tracking camera counts. The
mean values are marked with a x and the respective bars show
one standard deviation.

inertial sensor cues of the hybrid tracker provide accurate limb
orientations and this suffices to correctly track the full body pose.
The mean tracking errors of hybrid6c merely increased by 0.022
and 2.91◦ in comparison to the respective eight camera setup.
The previous camera setups were designed to investigate a certain
scenario, such as a missing viewing direction or spatial restrictions
for camera positioning. In order to investigate how the trackers
perform with respect to the number of tracking cameras in general
we now vary the tracking camera count. Thus, we incrementally
reduce the number of tracking cameras and run the trackers for all
camera permutations.
We computed the tracking errors of this experiment for a single
actor of the database, which adds up to evaluating 2460 recording
sequences, each of it containing 621 frames on average. As can be
seen in Fig. 12 the hybrid tracker clearly outperforms the video
tracker. For both trackers the average XOR error and mean angular
error increase by reducing the number of tracking cameras, but the
average error terms of the hybrid tracker increase at a slower rate.
The mean tracking error and standard deviations are summarized
in Tab. 6.
So far, the mean XOR error has been averaged over all camera

views, independent of which cameras have been selected for
tracking. As the XOR evaluation metric and objective functions
of the trackers both operate on silhouette data, we carried out a
leave-one-camera-out experiment to prove validity of the XOR
metric. For this experiment we only consider the XOR error of
the camera that has not been used for tracking and reevaluate
the tracking results of the previous 7 tracking camera setup. We
denote the leave-one-out XOR error as XORloo in the following.

TABLE 6: Average tracking error for varying number of camera
views. The number of tracking cameras is varied from 7 to 2 and
all N possible permutations have been considered.

approach µxor σxor µang[deg] σang[deg] N
video7c 0.210 0.045 33.12 45.10 8
hybrid7c 0.197 0.040 16.41 17.99 8
video6c 0.222 0.051 35.86 46.91 28
hybrid6c 0.201 0.042 16.89 19.35 28
video5c 0.239 0.061 40.26 49.46 56
hybrid5c 0.209 0.046 17.57 21.06 56
video4c 0.265 0.079 44.65 50.21 70
hybrid4c 0.221 0.052 18.65 22.95 70
video3c 0.318 0.111 55.68 53.91 56
hybrid3c 0.244 0.066 20.95 27.00 56
video2c 0.431 0.152 73.83 56.45 28
hybrid2c 0.299 0.094 25.48 31.71 28

TABLE 7: Tracking error statistics for different levels of sensor
lag. The orientation data of the IMUs used for tracking have been
artificially delayed by constant time offsets of multiple frames.

offset [frames] µxor σxor µang[deg] σang[deg]
0 0.192 0.044 15.71 19.19
1 0.196 0.046 16.43 21.40
2 0.197 0.046 16.57 21.72
3 0.198 0.046 16.60 21.42
5 0.203 0.049 18.31 25.89
10 0.213 0.055 20.22 28.39
25 0.232 0.056 27.34 37.48

For the hybrid tracker the average XORloo results in 0.207 and
0.222 for the video tracker. In comparison, the XOR error µxor
computed over all camera views is 0.197 and 0.210 respectively,
see Tab. 6. Thus there is a minor offset in the values, but the
relative difference for both trackers is almost identical. In fact,
with respect to XORloo the hybrid tracker performs even better
than for µxor , as the difference of mean values is slightly higher.

7.5 Tracking Error vs. Sensor Lag
In this section we evaluate the robustness of the hybrid tracker
to sensor lag. As we fuse sensor information of two independent
measurement systems, namely video and IMUs, we desire and
assume perfect synchronization of the measurement data. How-
ever, imperfect manual synchronization during post-processing,
sampling rate jitter or time delays due to filtering might lead to
asynchronous data streams. The latter refers to the Kalman-filtered
orientation estimates of the IMUs, which might lag during high
dynamical motions, see Sec. 5.
In order to evaluate how the hybrid tracker responds to asyn-
chronous measurement data, we added constant time offsets to
the orientation data streams of the tracking IMUs. This does
not model possibly time-varying characteristics of measurement
lag, but applies a constant worst-case delay on each frame. Our
experiments comprise the tracking error, where IMU data is
artificially delayed by 1, 2, 3, 5, 10 and 25 successive frames. At
maximum this corresponds to a delay of 0.5s at 50 Hz sampling
rate. For all experiments in this section we have used the full set of
available camera views and a weighting parameter of λ = 1.0. As
can be seen in Tab. 7 the mean XOR error and mean angular
error increase if the orientation measurements of the tracking
sensors are artificially delayed. However, up to a sensor lag of
approximately 7 frames, the hybrid tracker performs better in both
error metrics compared to the video tracker. Thus, even though
every orientation measurement is delayed by 0.14s, the hybrid
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Fig. 14: Joint position error for the Jog sequence of subject 2 in
the HumanEva dataset. The hybrid tracker (blue) outperforms the
video tracker (red). A manual inspection revealed that twisted legs
causes the peak of the hybrid tracker around frame 220. The video
tracker has problems tracking the legs for the entire sequence.

tracker is able to provide more accurate results than the video
tracker.
For small delays such as 3 frames the hybrid tracker mean XOR
error slightly increase by 0.006 and the mean angular error by
0.89◦. In general, time delays due to jitter, manual synchronization
and filtering do not exceed multiple frames. Thus, the preceding
experiment shows that the hybrid tracker is robust to moderate
asynchronicity in the measurements.

7.6 Evaluation on HumanEva Dataset

In order to evaluate the hybrid tracker with respect to ground-
truth motion capture data we use the HumanEva [25] dataset. This
dataset consists of multi-view video and ground-truth 3D body
poses obtained from a commercial marker-based motion capture
system. As IMU data are not available in HumanEva we use
ground-truth body part orientations to generate virtual IMU data.
The HumanEva dataset consists of four actors performing several
activities. Every activity is recorded three times and the data is
then divided into disjoint subsets for validation, train and test
purposes. For many sequences, including all test subsets, MoCap
data is withheld for evaluation purposes. We evaluate the hybrid
and video tracker on the first trial of validation sequences of actors
1-3. Because no surface models are provided for those actors we
have used the method of [57] to estimate the subject shape from
marker data alone. In particular, we used SMPL [58] as our body
model which is publicly available. For efficiency, tracking was
performed with a skeleton with fewerDoF and pose blend-shapes
set to zero.
For all experiments on the dataset we proceed as follows. In order
to initialize the surface model and align the virtual IMU readings,
we use ground-truth body poses of the first frame. For every
subsequent frame we estimate the body pose using silhouettes
and virtual IMU readings only. Silhouettes are generated by a
background subtraction procedure provided along the dataset. All
7 cameras are considered for tracking except for Subject 1, where
the four monochrome cameras are excluded due to very poor
segmentation results. For the hybrid tracker we use ground-truth
orientations of lower arms, shanks and torso for tracking and equal
weighting of orientation and visual cues.
Different to the previous experiments we now evaluate the tracking
performance with respect to the average joint position error, see
Sec. 7.1.3. We use the method proposed within the HumanEva
dataset and compute the sum of Euclidean distances of 15 virtual
markers. In Fig. 14, we show the joint position error for the

TABLE 8: Mean and standard deviations of the joint position error
for validation subsets of the HumanEva dataset.

Actor Action 3D error [cm]
Video Hybrid

S1 Walking 13.81 ± 6.41 4.19 ± 1.31
S1 Jog 11.97 ± 4.64 3.76 ± 1.57
S2 Walking 13.39 ± 2.88 4.88 ± 1.26
S2 Jog 9.21 ± 2.30 4.46 ± 1.66
S3 Walking 7.03 ± 2.56 5.15 ± 2.87

jogging sequence of subject 2 obtained by the hybrid and video
tracker. It clearly demonstrates the superior performance of the
hybrid tracker. In Tab. 8 we show the average tracking results
for all sequences that have been evaluated. For the hybrid tracker
the mean joint position error is between 3.8 − 5.2cm. The
video tracker is not capable to track the motions properly as the
silhouettes are too ambiguous and achieves a mean joint position
error of 7− 13.8cm. Due to corrupted MoCap data, we excluded
the Jog sequence of subject 3.
Plenty approaches have been evaluated on the HumanEva dataset
in the literature. The majority report tracking errors with respect
to the test sequences, which we could not use due to missing
ground-truth motion capture data. Similar to our experiments, [59]
and [12] also evaluated on the validation subsets and report an
average joint position error of 5.9 − 7.7cm and 1.9 − 4.8cm
for walking and jogging activities, respectively. [59] applies
a loosely-connected-parts body model and combines an image
likelihood function based on silhouette and edge features with
body part detectors and uses non-parametric belief propagation
for inference. Within the same publication a tracking error of
6.6 to 7.0cm is reported for an algorithm based on an Annealed
Particle Filter, using silhouette and edge features. [12] achieves
state-of-the-art results with a discriminative approach based on
Twin Gaussian Processes with HoG features generated from the
three color camera views only.
To conclude, we have shown that a simple approach based on local
optimization and silhouette features achieves competitive tracking
errors, when inertial orientation information is incorporated. Thus
without using more image features such as edge and color infor-
mation or adding physical constraints, a sparse set of IMUs can
improve the tracking significantly.

8 CONCLUSIONS

In this paper, we presented an approach for stabilizing full-body
marker-less human motion capturing using a small number of
additional inertial sensors. Reconstructing a 3D pose from 2D
video data suffers from inherent ambiguities. We showed that a
hybrid approach combining information of multiple sensor types
can resolve such ambiguities, significantly improving the tracking
quality. In particular, our orientation-based approach could correct
tracking errors arising from rotationally symmetric limbs and
noisy visual cues. Using only a small number of inertial sensors
fixed at outer extremities stabilized the tracking for the entire
underlying kinematic chain.
In contrast to the preliminary work [23], we provide additional
derivations and details to integrate orientation data and present an
extended evaluation. A thorough evaluation on both orientation
and video error metrics have proven the superior performance of
the hybrid approach. We have shown that we require less cameras
compared to a pure video-based tracker and have evaluated the
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Fig. 13: We show three exemplary frames of the TNT15 dataset and one of HumanEva (right most example). Each frame is is illustrated
by two images. The images on the left depict the estimated model pose; ground-truth orientations are shown in solid lines and estimated
orientations in dashed lines. The right images show the mesh projected to the respective RGB-image. For the TNT15 sequences we
have used a lower resolution mesh for tracking, which is actually visible in the respective RGB-images.

robustness against sensor lag. Experiments on HumanEva dataset
show that even using very basic image features we achieve
competitive results compared to approaches which rely on learning
or expensive inference methods. Another conclusion from our
experiments is that commonly used error metrics based only
on joint errors are incomplete to asses human pose estimation
accuracy. To that end we make the TNT15 dataset including the
10 IMUs publicly available at [24] so that other researchers can
use it to validate their human pose estimation methods.
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[1] T. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in vision-
based human motion capture and analysis,” Computer Vision and Image
Understanding (CVIU), vol. 104, no. 2, pp. 90–126, 2006.

[2] A. Baak, B. Rosenhahn, M. Müller, and H. Seidel, “Stabilizing motion
tracking using retrieved motion priors,” in IEEE International Conference
on Computer Vision (ICCV), 2009, pp. 1428–1435.

[3] A. O. Balan, L. Sigal, M. J. Black, J. E. Davis, and H. W. Haussecker,
“Detailed human shape and pose from images,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2007.

[4] L. Herda, R. Urtasun, and P. Fua, “Implicit surface joint limits to
constrain video-based motion capture.” in Euroepan Conference on
Computer Vision (ECCV), vol. 3022, 2004, pp. 405–418.

[5] S. Ioffe and D. Forsyth, “Human tracking with mixtures of trees,” in IEEE
International Conference on Computer Vision (ICCV), vol. 1, 2001, pp.
690–695.

[6] H. Sidenbladh, M. Black, and D. Fleet, “Stochastic tracking of 3d human
figures using 2d image motion,” in European Conference on Computer
Vision (ECCV), ser. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2000, vol. 1843, pp. 702–718.

[7] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with
parameter-sensitive hashing,” in IEEE International Conference on Com-
puter Vision (ICCV), 2003, pp. 750–757.

[8] J. Gall, A. Yao, and L. Van Gool, “2D action recognition serves 3D
human pose estimation,” in European Conference on Computer Vision
(ECCV), 2010, pp. 425–438.

[9] A. Agarwal and B. Triggs, “Recovering 3D human pose from monocular
images,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), vol. 28, no. 1, pp. 44–58, 2006.

[10] A. Elgammal and C. Lee, “Inferring 3D body pose from silhouettes using
activity manifoldlearning,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 2, 2004.

[11] C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas, “Discriminative
density propagation for 3D human motion estimation,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), vol. 1, 2005,
p. 390.

[12] L. Bo and C. Sminchisescu, “Twin Gaussian Processes for Structured
Prediction,” International Journal of Computer Vision (IJCV), vol. 87,
pp. 28–52, 2010.

[13] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6m:
Large scale datasets and predictive methods for 3d human sensing
in natural environments,” Institute of Mathematics of the Romanian
Academy and University of Bonn, Tech. Rep., September 2012.

[14] G. Pons-Moll, D. J. Fleet, and B. Rosenhahn, “Posebits for monocular
human pose estimation,” in Proceedings IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), Columbus, Ohio, USA, Jun. 2014.

[15] R. Urtasun, D. J. Fleet, and P. Fua, “3D people tracking with gaussian
process dynamical models,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2006.

[16] J. Wang, D. Fleet, and A. Hertzmann, “Gaussian process dynamical
models for human motion,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), vol. 30, no. 2, pp. 283–298, 2008.

[17] D. Brubaker M. A., Fleet and A. Hertzmann, “Physics-based person
tracking using the anthropomorphic walker,” in International Journal on
Computer Vision (IJCV), vol. 87, no. 1-2, 2010, pp. 140–155.

[18] P. Guan, A. Weiss, A. Balan, and M. Black, “Estimating human shape
and pose from a single image,” in IEEE International Conference on
Computer Vision (ICCV), 2009, pp. 1381–1388.

[19] L. Sigal, M. Vondrak, and O. Jenkins, “Physical simulation for proba-
bilistic motion tracking,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2008.

[20] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel, and
S. Thrun, “Performance capture from sparse multi-view video,” in ACM
Transactions on Graphics (SIGGRAPH). New York, NY, USA: ACM,
2008, pp. 1–10.

[21] J. Gall, C. Stoll, E. de Aguiar, C. Theobalt, B. Rosenhahn, and H. Seidel,
“Motion capture using joint skeleton tracking and surface estimation,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2009.

[22] D. Roetenberg, “Inertial and magnetic sensing of human motion,” These
de doctorat, 2006.

[23] G. Pons-Moll, A. Baak, T. Helten, M. Müller, H.-P. Seidel, and B. Rosen-
hahn, “Multisensor-fusion for 3D full-body human motion capture,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2010, pp. 663–670.

[24] “Multimodal human motion database TNT15,” http://www.tnt.uni-
hannover.de/project/TNT15/.

[25] L. Sigal, A. Balan, and M. Black, “Humaneva: Synchronized video
and motion capture dataset and baseline algorithm for evaluation of
articulated human motion,” International Journal on Computer Vision
(IJCV), vol. 87, no. 1, pp. 4–27, 2010.

[26] M. Andriluka, S. Roth, and B. Schiele, “Monocular 3d pose estimation
and tracking by detection,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2010, pp. 623–630.

[27] V. Belagiannis, X. Wang, B. Schiele, P. Fua, S. Ilic, and N. Navab,
“Multiple Human Pose Estimation with Temporally Consistent 3D Picto-
rial Structures,” in European Conference on Computer Vision, ChaLearn
Looking at People Workshop, 2014.

[28] J. Gall, B. Rosenhahn, T. Brox, and H. Seidel, “Optimization and filtering
for human motion capture,” International Journal on Computer Vision
(IJCV), vol. 87, pp. 75–92, 2010.

[29] W. Zhang, L. Shang, and A. Chan, “A robust likelihood function for 3d
human pose tracking,” IEEE Trans. Image Processing, 2014.

[30] E. De Aguiar, C. Theobalt, C. Stoll, and H.-P. Seidel, “Marker-less
deformable mesh tracking for human shape and motion capture,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

[31] C. Wu, B. Wilburn, Y. Matsushita, and C. Theobalt, “High-quality shape
from multi-view stereo and shading under general illumination,” in Com-
puter Vision and Pattern Recognition (CVPR), 2011 IEEE Conference
on. IEEE, 2011, pp. 969–976.



14

[32] C.-H. Huang, E. Boyer, N. Navab, and S. Ilic, “Human shape and pose
tracking using keyframes,” in Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on. IEEE, 2014, pp. 3446–3453.

[33] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2011, pp. 1297–1304.

[34] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon, “The vitruvian
manifold: Inferring dense correspondences for one-shot human pose
estimation,” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). IEEE, 2012, pp. 103–110.

[35] G. Pons-Moll, J. Taylor, J. Shotton, A. Hertzmann, and A. Fitzgibbon,
“Metric regression forests for human pose estimation,” in British Ma-
chine Vision Conference (BMVC), 2013.

[36] V. Ganapath, C. Plagemann, S. Thrun, and D. Koller, “Real time motion
capture using a time-of-flight camera,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2010.

[37] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, Real-time human
pose tracking from range data. Springer, 2012.

[38] A. Baak, M. Müller, G. Bharaj, H.-P. Seidel, and C. Theobalt, “A data-
driven approach for real-time full body pose reconstruction from a depth
camera,” in Consumer Depth Cameras for Computer Vision. Springer,
2013, pp. 71–98.

[39] T. Helten, M. Müller, H.-P. Seidel, and C. Theobalt, “Real-time body
tracking with one depth camera and inertial sensors,” in Proceedings of
the 2013 IEEE International Conference on Computer Vision, ser. ICCV
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 1105–
1112.

[40] F. Bogo, M. J. Black, M. Loper, and J. Romero, “Detailed full-body
reconstructions of moving people from monocular RGB-D sequences,”
in International Conference on Computer Vision (ICCV), Dec. 2015, pp.
2300–2308.

[41] L. Chen, H. Wei, and J. Ferryman, “A survey of human motion analysis
using depth imagery,” Pattern Recogn. Lett., vol. 34, no. 15, pp. 1995–
2006, Nov. 2013.

[42] H. Dejnabadi, B. Jolles, E. Casanova, P. Fua, and K. Aminian, “Esti-
mation and visualization of sagittal kinematics of lower limbsorientation
using body-fixed sensors,” TBME, vol. 53, no. 7, pp. 1382–1393, 2006.

[43] Y. Tao, H. Hu, and H. Zhou, “Integration of vision and inertial sensors
for 3D arm motion tracking in home-based rehabilitation,” International
Journal on Robotics Research (IJRR), vol. 26, no. 6, p. 607, 2007.

[44] R. Slyper and J. Hodgins, “Action capture with accelerometers,” in ACM
SIGGRAPH/Eurographics, SCA, 2008.

[45] J. Ziegler, H. Kretzschmar, C. Stachniss, G. Grisetti, and W. Burgard,
“Accurate human motion capture in large areas by combining IMU-
and laser-based people tracking,” in Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), San Francisco,
CA, USA, 2011, pp. 86–91.

[46] G. Pons-Moll, A. Baak, G. J., L. Leal-Taixé, M. Müller, H.-P. Seidel, and
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