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Abstract— This paper establishes a duality between the
calculus of variations, an increasingly common method for
trajectory planning, and Hidden Markov Models (HMMs), a
common probabilistic graphical model with applications in
artificial intelligence and machine learning. This duality allows
findings from each field to be applied to the other, namely
providing an efficient and robust global optimization tool and
machine learning algorithms for variational problems, and fast
local solution methods for large state-space HMMs.

I. MOTIVATION

A wide range of mathematical models has been used
to describe trajectory planning. In the case of fully auto-
mated driving, originally the dominant models were highly
discretized and mainly based on graph searches. These
models have proven successful in the DARPA Grand and
Urban Challenges (cf. [MBB+08], [UAB+08], [KZW+08],
[PEF13]). Recent works have adopted methods and mod-
els from the continuous domain (e.g. [WRG12], [Zie12],
[RZR+14], [ZBDS14]). These have the advantages of being
close to real-world terms, requiring fewer prior assumptions,
and providing solutions of high resolution at comparatively
low computational effort. The calculus of variations, which
is usually at the core of these approaches, has already
been applied in computer vision (e.g. [KWT88], [LCO+04]),
engineering and quantum mechanics ([Wei74], [Kom08]). It
is commonly solved with iterative descent methods, which
have difficulty to discern between local and global minima
and to enforce hard constraints, as given by the physical
limits of the vehicle. Numerical tools to address both issues
are available, but reliable estimates of robustness are hard to
establish—in particular in complex real-world scenarios.

From a different domain with different applications comes
the Hidden Markov Model (HMM), aimed at reconstructing
a sequence of discrete states given a sequence of uncertain
measurements. Applications include part-of-speech tagging
(e.g. [LGB94]), handwriting recognition (e.g. [HBT96]) and
tracking (e.g. [LTHRR11]). HMMs have well-understood
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global solutions, found by the so-called Viterbi algorithm;
their main challenge is a high computational effort when the
number of states and possible transitions is very large.

Contributions: This paper shows that HMMs and the calcu-
lus of variations represent the very same kind of optimization
problem in two different ways with respective limitations
and strengths. It demonstrates how the two models can
be transformed into each other, to find global optima for
variational problems, or to quickly find local optima for large
HMMs. Representing a variational problem as an HMM has
mainly three applications for fully automated driving:

• Global optimization can produce final trajectories (how-
ever, the computational effort may still exceed the
capacities at the necessary resolution), or provide a
low-resolution “initial guess” close to the actual global
optimum, which is then refined by a variational method.

• Knowledge of the global optimum can provide refer-
ences and benchmarks for developing faster iterative
optimization tools and better optimization criteria.

• The HMM training framework, that allows parameters
to be obtained through machine learning, creates a
possibility to test the planning assumptions and esti-
mate free parameters for variational methods. While the
parameters of fully automated driving likely cannot be
determined through the use of machine learning alone,
it can serve to provide realistic estimates of their scale.

II. MODELS
This section briefly introduces the respective methods,

their motivations and the notation used here. References to
more thorough presentations are given along the way.

A. The Calculus of Variations
The calculus of variations (see [VB10]) is concerned

with finding optimal functions given so-called functionals.
Formally, as used in this paper, a functional S takes a
member of a space of differentiable functions, such as

Ξ =
{
ξ
∣∣ ξ : [tstart, tend]→ X, ξ ∈ C2

}
(1)

and maps it onto the real numbers S : Ξ → R, where the
operation is denoted S[ξ]. The general goal is now to find

ξ∗ := argmin
ξ∈Ξ

S[ξ] (2)

often given some constraints to limit the space Ξ from which
ξ is taken. We will refer to the ξ ∈ Ξ as trajectories, and to
their codomain X as the state space.

In physical terms the action S of a particle trajectory ξ is

S[ξ] =
∫ tend

tstart

dt L(ξ(t), ξ̇(t), ξ̈(t), t), (3)



where t denotes time, ξ̇ and ξ̈ denote derivatives of ξ w.r.t.
t, and L denotes the particle’s Lagrangian1. This particular
type of functional is well-understood due to its physical sig-
nificance, the principle of least action; the optimal trajectory
is determined using the Euler–Lagrange equation given by

δξS :=
∂L

∂ξ
− d

dt

∂L

∂ξ̇
+

d2

(dt)2
∂L

∂ξ̈
, (4)

where δξS|ξ=ξ∗ ≡ 0 is necessary for the optimality of ξ∗.
1) Discrete Variational Problems: While the calculus of

variations is originally an analytic formulation, modern appli-
cations are mainly based on numerical approaches, using dis-
crete time steps for ξ(t), and (4) for a gradient descent. This
discretization is essential for the correspondence established
in this paper. Furthermore, discretization transforms the
variational problem into classical vector optimization. This
has the benefit of unlocking a diverse range of optimization
methods, in particular for the introduction of constraints
(cf. Sec. II-A.2). This section will outline the terminology
of discretization and prove for the case of L(ξ, ξ̇, ξ̈, t) that
optimizing the discretized vector via its gradient is equivalent
to optimizing the variational problem using (4) both in its
discrete form, and in the continuous limit.

The functional S of a function, as in (3), can be turned
into a function S of a vector by dividing [tstart, tend] into T ∈
N intervals of constant width ∆t = (tend − tstart)/T , using
a discrete index τ ∈ {0, ..., T} and the finite differences
approximation (∆/∆τ) yτ := (yτ+1− yτ−1)/2∆t to obtain

S =
T∑

τ=0

∆t · Lτ (D
0
τ , D

1
τ , D

2
τ ) (5)

to be used with D0
τ = ξτ , D1

τ = (−ξτ−1 + ξτ+1)/2∆t and
D2

τ = (ξτ−2 − 2ξτ + ξτ+2)/4∆t2.2 For simplification it is
useful to, instead of S, consider S̄ := S/∆t and both S
and S̄ are now functions of a discrete sequence of points
ξ = [ξ0, ..., ξT ]

⊤, so formally S, S̄ : RT+1 → R.
The τ -th component of gradient ∇S̄ w.r.t. ξ is given by

∇τ S̄ =
∂

∂ξτ
S̄ =

∂Lτ

∂D0
τ

∂D0
τ

∂ξτ
→+ 1

+
∂Lτ−1

∂D1
τ−1

∂D1
τ−1

∂ξτ
→+

1

2∆t

+
∂Lτ+1

∂D1
τ+1

∂D1
τ+1

∂ξτ
→− 1

2∆t

+
∂Lτ−2

∂D2
τ−2

∂D2
τ−2

∂ξτ
→+

1

4∆t2

+
Lτ

∂D2
τ

∂D2
τ

∂ξτ
→− 2

4∆t2

+
∂Lτ+2

∂D2
τ+2

∂D2
τ+2

∂ξτ
→+

1

4∆t2

(6)

1ξ̈ is classically excluded from L, but all approaches given here extend
to any finite order; ξ̈ is included to demonstrate the necessary principles.

2This formulation uses central differences, as these better represent the
necessity of upper and lower limits for derivatives. The most intuitive
application for HMMs is backward differences, as will be used in Sec. III.

(the boxes indicate substitutions), which can be rewritten as

∇τ S̄ =
∂Lτ

∂D0
τ

− 1

2∆t

(
∂Lτ+1

∂D1
τ+1

− ∂Lτ−1

∂D1
τ−1

)
→ ∆

∆τ

(
∂Lτ

∂D1
τ

)
(7)

+
1

4∆t2

(
∂Lτ−2

∂D2
τ−2

− 2Lτ

∂D2
τ

+
∂Lτ+2

∂D2
τ+2

)
→ ∆2

(∆τ)2

(
∂Lτ

∂D2
τ

)
.

and, as per factor rule, ∇τS = ∆t · ∇τ S̄. Now a given ξ∗ is
stationary w.r.t. S iff ∥∇S(ξ)∥22

∣∣
ξ=ξ∗

= 0 with

∥∇S∥22 =
T∑

τ=0

∆t ·

(
∂Lτ

∂D0
τ

− ∆

∆τ

∂Lτ

∂D1
τ

+
∆2

(∆τ)2
∂Lτ

∂D2
τ

)2

. (8)

Thus far, ∆t has not been significant, as any vector stationary
w.r.t. S is also stationary w.r.t. S̄. However, only S converges
in the limit of T →∞, such that ∆t→ 0, yielding

lim
∆t→0

∥∇S∥22 =

∫ tend

tstart

dt |∇S̄|2 !
= 0 ⇔ ∀τ :∇τ S̄

!
= 0, (9)

which mirrors the optimality condition of (4). The above
condition can be computed only at τ ∈ {3, ..., T−2}. For τ ∈
{1, T} the factor ∂Lτ±1/∂D

1
τ±1 cannot be computed; for

τ ∈ {2, T − 1}, also the factor ∂Lτ±2/∂D
2
τ±2 is undefined.

The straightforward solution is to set ∇τS := 0 for
τ ∈ {1, 2, T − 1, T}. This effects that during a gradient
descent the elements ξ0, ξ1, ξT−1 and ξT are not optimized
and remain fixed (to the values in the “initial guess”). The
first and last points and velocities must thus be known in
advance. This mirrors the assumption of fixed boundary
points and velocities in the classical derivation of (4). If ξ̈ is
not used in L, then ξ1 and ξT−1 (and thus the velocities) can
be optimized and only the boundary points must be given.
For optimizable start- and endpoints, see Sec. II-A.2.a.

2) Constraints and Generalizations: The previously de-
scribed derivation has three significant properties that limit its
application: The trajectory ξ is assumed to lie between fixed
start- and endpoints, ξ(tstart)

!
= xstart and ξ(tend)

!
= xend

3;
if the Lagrangian as in (3) includes ξ̈, then furthermore the
start and end velocities ẋstart and ẋend are fixed; other values
of ξ, ξ̇ or ξ̈ however are unconstrained.

a) Fixed Endpoints or Natural Boundary Conditions:
The need for fixed endpoints is connected to the derivation
of the Euler–Lagrange equation, which takes the simple form
of (4) only under these conditions. If one of these must
be variable for a given application, the fixed endpoints and
end velocities must give way to natural boundary conditions
(NBCs), which describe the condition of endpoints being
optimal w.r.t. the action S (see [VB10] for details).

b) Additional Constraints: Other than for the start and
endpoints, the Euler–Lagrange equation does not address
constraints. If required, such constraints can be introduced
either by choice of parameters, or (in cases where this is not

3For clarity, ξτ (or ξ(t)) ∈ X will be used to refer to elements of the
sequence (or function) ξ at time τ (or t), and xi ∈ X to refer to one of
the possible state space elements in general, not necessarily part of a given
trajectory. For example, ξ3 is the third step along a trajectory, but x3 is
merely some point in space. The same applies to the later use if στ and ςi.
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Fig. 1: An HMM with four states and probability distributions for the emis-
sion of symbols in each particular state. pij here is short for p(xj←xi|xi).
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Fig. 2: Graphical representation of a process with a given HMM (possibly
the one from Fig. 1). During six time steps, seven states [ξ0, ..., ξ6] are
assumed by the HMM, and seven symbols [σ0, ..., σ6] are emitted. Usually
only the symbols are considered known, and used to infer the most likely
sequence of the underlying, “hidden” states.

feasible) as part of the optimization method. For example,
trajectories of vehicles can be constrained to a fixed path by
optimizing arc length instead of a higher-dimensional posi-
tion in space (e.g. [RZR+14], [RZW+14]). However, usually
the transformation into a lower-dimensional, unconstrained
problem is not as straightforward. In these cases, the common
approach is to use an optimization tool that is able to enforce
the constraints, restricting the solution to the feasible region
Ξ (methods include reprojection to Ξ after every optimization
step, barrier methods or active set methods, see [NW06]).

B. Hidden Markov Models

Hidden Markov Models (HMMs) are probabilistic graphi-
cal models, and an extension of Markov chains. Both models
make use of the Markov property, which states that a
stochastic process is memoryless in that its future behavior
only depends on the current state, but not on the previous
states (or, equivalently, on just a fixed and finite number of
previous states, so that the information stored in the current
state can be expanded to account for the limited history).

1) Markov chains: A Markov chain is a graphical model
that has states x ∈ X representing the nodes of the graph,
and possible state transitions that represent directed edges
(xj←xi) ∈ X × X (the right-to-left temporal order will
simplify the later notation). There are probabilities assigned
to the transitions, p(xj←xi|xi), and also probabilities for
initial states p(xi 7→). The goal is now to determine the
probability p(ξ) of a sequence ξ = [ξ0, ξ1, ..., ξT ]

⊤ over
T ∈ N time steps (with each ξτ ∈ X) or the most
probable sequence ξ∗ := argmaxξ p(ξ). It is also possible
to determine the most likely set of parameters to the Markov
chain given some training sequences.

2) Extension to Hidden Markov Models: HMMs (see
[MZ97]) extend Markov chains by having the states emit
symbols ς ∈ Σ at random, one per time step. For this, each
state xi has an individual probability distribution P (Σ|xi),
such that some states are more likely to emit certain symbols
than others (cf. Fig. 1). Now, the internal state of an HMM
cannot be observed (it is hidden), but the observed sequence
of symbols σ = [σ0, ..., σT ]

⊤ gives some indication about

the probability of a proposed sequence of states ξ:

p(ξ|σ)∝p(ξ, σ)=

(
T∏

τ=1

p(στ |ξτ ) · p
(
ξτ← ξτ−1

∣∣ξτ−1

))
· p(σ0|ξ0) · p

(
ξ0 7→

)
,

(10)

where the underlined terms are distinctive of the HMM model,
whereas the rest describes the basic Markov chain.

III. CORRESPONDENCE

To map the calculus of variations onto an HMM, it is
necessary that the codomain or the image of the trajectory ξ
can be effectively expressed as a finite set of states.4 For the
reverse mapping, it must be possible to order and interpolate
the states of the HMM to yield a continuously differentiable
state space.5 The main corner points of the transformation
are to relate a sequence of states over time in an HMM to
values taken by a function over time in a variational problem;
to relate the maximization of multiplicative probabilities
to the minimization of additive Lagrangians; and to relate
the local, finite Markov memory to the local, finite Taylor
expansion used to evaluate the Lagrangian. Shared by all
of the following transformations is how the boundary point
types from the calculus of variations relate to terms of the
HMM, given in Tab. I. The goal is a correspondence of both
the optima and optimal values, such that for the limit of an
infinitely fine HMM state space

argmaxξ∈Ξ p(ξ|σ) = argminξ∈Ξ S(ξ) = ξ∗ (11)
p(ξ∗|σ) = 1/Z · exp(−S(ξ∗)). (12)

with a normalization constant Z s.t.
∑

ξ∈Ξ p(ξ|σ) = 1.6

A. Separable Lagrangian, First-Order Temporal Dependence

The most immediate correspondence can be established
for a Lagrangian of the form (here referred to as separable)

L(x, ẋ, t) = L1(x, t) + L2(x, ẋ), (13)

namely such that the velocity is penalized in a time-invariant
way (which is not uncommon, e.g. [KWT88], [RZR+14]).
In this case, it can be said in terms of the HMM parameters,7

p(στ |x2) = 1/Z1 · exp(−L1(x2, τ ·∆t+ tstart)) (14)
p(x2←x1|x1) = 1/Z2 · exp(−L2(x2, (x2−x1)/∆t)) (15)

or equivalently for the Lagrangian

L1(x, t) = − log p(σ[(t−tstart)/∆t]|x) (16)
L2(x, ẋ) = − log p

(
x← [x−∆t·ẋ]

∣∣[x−∆t·ẋ]
)
, (17)

4This means that discretizing X is possible, and ξ or ξ̇ is bounded (one
implies the other on a closed time interval for Ξ ⊆ C1, cf. (1)).

5Neighboring states must have similar probability distributions, and there
should be larger monotonous intervals for their parameters. Otherwise, the
transformation to the variational problem would be mathematically valid, but
unfit for gradient descent optimization for lack of meaningful derivatives.

6(12) resembles the Boltzmann distribution p(x) = 1/Z · exp−βE(x)
([Dem10]) with a thermodynamic beta β = 1/kB · T = 1.

7The constants Z, Z1 and Z2 are relevant to define actual probabilities;
however, the optimum found by the Viterbi algorithm is invariant to an
overall constant scaling factor, therefore Z = Z1=Z2=1 is algorithmically
admissible, if the values that subsequently occur in the algorithm are not
mistaken for probabilities. Furthermore, the transformation from p to L
completely omits any possible constants (scale and offset) for clarity.
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startpoint fixed to xstart p(x 7→) = δxxstart

startpoint NBC, arbitrary p(x 7→) = 1/|X|
startpoint NBC, penalized
via Pstart(x)

p(x 7→) ∝ exp(−Pstart(x))

endpoint fixed to xend backtracking from xend

endpoint NBC, arbitrary backtracking from x with max. p
endpoint NBC, penalized
via Pend(x)

multiplying end state probabilities
with exp(−Pend(x)), backtracking
from new most probable end state

TABLE I: CORRESPONDING BOUNDARY POINT TYPES.

where the square brackets denote rounding to the closest
applicable state or integral τ in the model.

B. Joint Lagrangian, First-Order Temporal Dependence
The above transformations assume, in accordance with

the HMM model, that the states emit symbols, not the state
transitions, thus making the probability of states dependent
on σ, while the transitions are considered time-invariant. This
in effect leads to the separation into L1 and L2 as given in
(13), instead of a joint L(x, ẋ, t) as assumed in the calculus
of variations. This, however, is not a fundamental limitation.
A classical HMM can be thought of as a probabilistic Moore
automaton (emissions during states), while the general Euler–
Lagrange model would correspond to Mealy automata (emis-
sions during transitions); both models can be transformed
into one another (see [Gil60]). Thus any HMM can as well be
thought of as emitting symbols during (and thus dependent
on) transitions, instead of states. To achieve this, a “Mealy
HMM” can be set up by replacing (14) with

p(στ |x2←x1) ∝ exp

(
−L(x2,

x2−x1

∆t
, τ ·∆t+tstart)

)
, (18)

which can then be turned into a Moore automaton that
describes the classical HMM. It should be noted that this is
mostly a theoretical consideration; for practical applications,
the more straightforward way is to extend the Viterbi algo-
rithm to rate the transitions based on a complete L(x, ẋ, t).

C. Higher-Order Temporal Dependence
Another aspect allowed for in the calculus of variations,

but not explicitly modeled in the HMM, is the dependence on
more than just a single transition (which, in the variational
model, corresponds to derivatives higher than ξ̇, and in the
HMM to a Markov memory of more than one previous state).
In this case, the “state” must be extended to also represent the
first m := n−1 derivatives, x̂ := [x, ẋ, ẍ, ..., dmx/(d t)m]⊤.
The state transitions then represent dnx/(d t)n and thus a
transition from x̂1 can lead to an approximate new state

x̂2=

[
x1+∆t·ẋ1, ẋ1+∆t·ẍ1, ...,

dmx1

(d t)m
+∆t· d

nx1

(d t)n

]⊤
. (19)

It should be noted that we refer to the state space always
as X , and the transition space always as Ẋ , regardless of
which derivative the elements of Ẋ represent.

IV. EVALUATION AND COMPARISON
The evaluation of the variational model and the HMM

is twofold: A practical application will demonstrate the

different nature of results produced by them given the same
example problems; a theoretical comparison will provide a
brief and more general overview of each model’s properties.

A. Practical Application

In the following examples, the Lagrangian is of the form

L(x, ẋ, ẍ, t)=Φ(x, τ)+a∥ẍ∥22+bδ(t−tend)∥x−xend∥22, (20)

where Φ is the given scalar field (or “potential”) normalized
to [0, 1] ([black,white] in the figures), a and b are weights
and δ is the Dirac delta. The values are given in the respective
figure captions, but should be understood as examples only.
In each case, the HMM is connected as in Fig. 1, i.e. only
neighboring states have transitions and each state has a loop.

1) Application to Brownian Noise Fields: To not pre-
suppose a specific problem structure, in this application,
shown and discussed in detail in Fig. 3, the two approaches
are compared on random fields based on two-dimensional
(X × {1, ..., T}) Brownian noise, resulting in fields that
feature both obvious large-scale structures for a clear global
distribution of optima, and fine details affecting their precise
location. The aim of this application is to show, how the
choice of free parameters (i.e. parameters specific to the
solver, not the problem) affects the obtained solution. For
HMMs, this is mainly the degree of discretization; for vari-
ational descent methods, it is mainly the initial guess (and,
to a lesser degree, the descent method; not discussed here).
The best solution (cf. Fig. 3e) is attained using HMMs to find
an approximation that is then used as an initial guess to be
refined by an Euler–Lagrange descent (cf. Fig. 3f).

Due to the unoptimized nature of the implementations, a
comparison of computation times is not meaningful. What
can be stated is that the BFGS-based SQP implementation
requires an average of 18.6 iterations to converge, and an
average of 46.8 function evaluations of S per iteration; as S
represents the full action S, each S evaluation comprises 25
evaluations of the Lagrangian.8 This leads to a total of about
2.1 · 104 Lagrangian evaluations. The HMM requires a fixed
37,160 Lagrangian evaluations per time step, which, for 25
time steps, leads to 9.2 · 105 evaluations of the Lagrangian,
roughly one and a half orders of magnitude more.

It is assumed that generally HMMs are less sensitive to the
choice of parameters, and the parameters are more intuitive
in their effect. Ill-chosen parameters for a gradient descent
may cause unexpected results and divergent, possibly chaotic
behavior, making their use in real-time applications risky.

2) Application to automotive trajectory planning: In this
section, the motivating problem of fully-automated driving
is discussed on an example taken from [RZR+14] and
explained in more detail there. The ego vehicle (cf. Fig. 4a)
wants to turn left at an intersection, and has to avoid two cars
of oncoming traffic. The front car takes a right turn, the rear
car passes straight through the intersection. Depending on
their spacing, either passing in between the two cars (Fig. 4b)
or waiting for both cars to clear the intersection (Fig. 4c)
before following the first at a safe distance represents desir-
able behavior. The decision is based on a field of occupancy

8Fewer if analytic gradients (as given by (4)) and Hessians are provided.
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(a) Effect of state space resolution at
large scales (state includes location
and speed). The field is sampled at
x∈{1, ..., 100}, τ ∈{1, ..., 200}.
Computation time is ca. 1 minute.
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τ

(b) The field of (a) is upsampled
to x∈{0.125, ..., 100} using linear
interpolation. Derivatives are finer
but the trajectory is almost the same.
Computation time is ca. 6 hours.

HMM code evaluation of the Lagrangian L

interpolation / algebra predecessor indices i 7→v v 7→i

(c) Percentage of computation time used for (b). The largest share is taken
by the computation of predecessor indices, and index-to-vector and vector-
to-index conversions, which could be optimized by lookup tables.
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τ

ξ∗2

ξ∗1

(d) Small-scale effect of state space
resolution, in comparison to (a)
and (b). The field is sampled at
x∈{1, ..., 25} for ξ∗1 and x ∈
{0.125, 0.25, ..., 25} for ξ∗2 (figure
axis cropped). At this small scale,
the difference in resolution has more
significant effects.
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(e) Global vs. local optimization.
The global optimum ξ∗ found by
the HMM is shown dashed. With
“initial guesses” radiating from xstart
at 1,200 different speeds, the Euler–
Lagrange descent gets stuck in local
minima (examples shown dotted),
none of which matches ξ∗. Cf. (f).

S0 1 2 5 6 7

S[ξ~]

S[ξ∗]

(f) Histogram of actions S for all initial guesses as in (e). The solution
S[ξ∗] = 0.903 (found by the HMM) is never found from any such guess;
the closest solution reaches S = 1.148 (average S = 4.523). Using ξ∗ as
an initial guess yields S[ξ~] = 0.833 (possible due to the continuous X).

Fig. 3: Example IV-A.1: Parameter effects of variational models and HMMs.
Φ as shown in the background (black=0, white=1), a = 5 · 10−3, b = 0,
ξ̈ ∈ [−1, 1], ξ̇ ∈ [−6, 6], startpoint is fixed, endpoint is arbitrary by NBCs.

ego vehicle
(in motion at τ = 0)

s

planning
space

τ

(a) Problem setup; vertical axis is time

τ

s1 200

passing in
between the cars

(b) Solution for wide spacing

τ
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passing after both
cars

(c) Solution for narrow spacing

Fig. 4: Example IV-A.2 as in [RZR+14]: A left turn through two oncoming
cars. a = 5 · 10−3, b = 2 · 10−4, xend = 200, ξ̇ ∈ [0, vmax]. The dashed
interval of s shows where the ego vehicle’s path crosses the oncoming lane.

predictions, generated by means described in [RZR+14] and
[RZW+14]. This field is used to plan a trajectory along the
arc length s of the given path with maximum safety and
comfort, by minimizing collision risks as well as longitudinal
and lateral accelerations, while obeying traffic rules. While
[RZR+14] notes that the obtained solution depends on the
initial guess in an Euler–Lagrange descent, HMMs always
determine the optimal solution (provided in Fig. 4). The
relevant distinction between the two cases can, for the given
parameters, be made at a field resolution of 8× 8 in below
0.2 s with unoptimized, serial MATLAB code on a Core
i7@2.90 GHz (see also Fig. 3c).

B. Theoretical Comparison
This section compares the two approaches in terms of their

general computational properties, namely how effort scales
with problem size, how they can be parallelized and what
kind of results can be expected.

1) Computational Complexity: While a firm and complete
upper bound for the Viterbi algorithm exists, given by

VITERBI ∈ TIME(T ·|X|·|Ẋ|) ∩ SPACE(T ·|X|), (21)

the only upper bounds for the Euler–Lagrange approach are

EL1 ∈ SPACE(T ) and EL2 ∈ SPACE(T 2), (22)

where EL1 refers to, e.g., a simple gradient descent or L-
BFGS, while EL2 refers to algorithms using a full Hessian
(e.g. Newton’s method or dense BFGS). The TIME required
to reach convergence cannot be given; theoretically, infinitely
many steps are possible, depending on the given problem. In
general, however, the Euler–Lagrange optimization does not
scale with the number of states X , assuming that X is not
always monotonous. Therefore, this approach scales benignly
with |X|, as opposed to the Viterbi algorithm.

Both algorithms can benefit from parallelization in terms
of scaled speedup (cf. [Gus88]) but each maintains a signif-
icant serial fraction. The Viterbi algorithm can compute the
entirety of actions for all x ∈ X in parallel at every τ , but the
accumulation over τ has to be performed serially. The Euler–
Lagrange descent instead can compute all τ ∈ {1, ..., T}
components of ∇S in parallel, but the descent through the
state space must be serial. Thus, a choice of models also
determines which space, time or state, can be parallelized.
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usual optimization method iterative linear or quadratic programming;
e.g. gradient descent or dense Hessian SQP

dynamic programming;
Viterbi algorithm

usual domain choices for
above optimization method

times discrete and bounded,
state space continuous and unbounded: T ∈ N, X = R

times and state space discrete and
bounded: T ∈ N, |X| ∈ N.

optimization goal stationary solution or local optimum global optimum
other constraints enforcement possible but in general difficult to handle local constraints straightforward

optimization complexity SPACE(T ) or SPACE(T 2), TIME to convergence unbounded SPACE(T ·|X|), TIME(T ·|X|·|Ẋ|)
parallelization parameters times parallel, iterations serial, |X| is not a scale parameter state space parallel, times serial

TABLE II: COMPARISON OF SEVERAL KEY FEATURES OF THE TWO DISCUSSED MODELS.

2) Quality of Results: For the given computational re-
quirements, it must be minded that the Viterbi algorithm is a
global optimizer, while the Euler–Lagrange descent is only
a local optimizer—thus, the two methods generally do not
seek the same type of solution. Yet, as seen in Fig. 3d,
the discretization necessary to render the HMM approach
tractable can considerably affect the solution. Thus, not every
variational problem may lend itself to the transformation to
an HMM, as the global optimum of the discretized model may
not sufficiently reflect the global optimum of the continuous
model. Conversely, not every HMM can be reasonably turned
into a variational model; namely, if the set of states X
cannot be continuously approximated, the resulting action
S will have a multitude of scattered local extrema, and if
convergence is reached, the result may be near-random.

Table II summarizes the key features of the two models.

V. CONCLUSION
This paper has shown that the HMM and the calculus of

variations share the same general optimization goal, one in a
discrete, the other in a continuous form. The transformations
between the models have been given, and their characteristics
have been demonstrated on example problems. Whether a
particular problem benefits from this transformation, or if
it should rather be solved within its natural formulation,
can only be decided based on the problem’s individual
characteristics; several factors to consider have been given.

It appears that the strengths of the HMM approach provide
several valuable advantages for real-time trajectory planning
(as in automated driving). The Viterbi algorithm is less sensi-
tive to the choice of parameters and inputs; it terminates after
a known number of steps; it can be efficiently implemented
in parallel hardware; and it is able to compute more than one
possible trajectory at almost no further cost—this is relevant
for fail-safe emergency stop applications in case of a system
failure, such as discussed in [RZW+14].

Future works must extend the evaluation, in particular to
address the transformation of real-world HMMs to variational
approaches. The provided correspondence can further be
generalized to variational problems involving functions of
several variables; here, a special case of matching proba-
bilistic graphical models would be Markov Random Fields
(MRFs) and Conditional Random Fields (CRFs).
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