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ABSTRACT

Hyperspectral image processing has been a very dynamic
area in remote sensing and other applications since last
decades. Hyperspectral images provide abundant spectral
information to identify and distinguish spectrally similar ma-
terials. Recent advances in kernel machines promote the
novel use of Gaussian processes (GP) for classifying hyper-
spectral images. Many sophisticated kernel functions have
been provided for kernel-based methods. However, different
kernel functions has different performance in different ap-
plications. This paper introduces GP models with different
kernel functions for classifying hyperspectral images. We
first provided the mathematical formulation of GP models
for classification. Then, several popular kernel functions and
their hyperparaeters selection for GP models are introduced.
The experiment are performed on three benchmark datasets
to evaluate the performances of different kernel functions
in terms of classification accuracy. Their performances are
compared with each other and discussed in detailed.

Index Terms— Hyperspectral image classification, Gaus-
sian processes, kernel function

1. INTRODUCTION

Kernel machines have received great attention in the remote
sensing community since several decades ago. The kernel-
based methods have following inherent virtues: 1) tackling
high dimensional input spaces efficiently; 2) dealing with
noisy samples in a robust way; 3) working with a relatively
low number of labeled training samples. These characters
make them well-suited to handle the classification problems
of hyperspectral images, e.g., the well-known Huges phe-
nomenon caused by a large number of spectral bands and a
relatively small number of labeled training samples. In partic-
ular, Gaussian Process (GP) models [1, 2] have been proved
as an excellent classifier for classifying hyperspectral images
in terms of accuracy and robustness. In contrast to another
popular kernel machines–SVM [3], GP models provide truly
probabilistic outputs with an explicit degree of prediction un-
certainty. The probabilistic methods have various advantages
in practical recognition circumstances.

Table 1. Summary of several popular kernel functions. The
covariances are written either as a function of x and x′, or as
a function of r = |x− x′|.
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However, as a kernel-based method,the selection of the
kernel will crucially affect the performance of GP models.
Different kernel has different performances for different kinds
of information [4]. In this paper, our goal is to evaluate the
performance of GP models using several most popular kernels
for classifying hyperspectral images in terms of accuracy.

2. GP MODELS

2.1. GP classification

Given a training set (X,y) = {Xn, yn}Nn=1, where N is the
number of labeled samples and yn is the corresponding class
label that indicates the land-cover type. Each vector Xn ∈ Rd
represents the spectral d bands of a pixel in a HSI. We aim
at labeling a new test sample set x = {xm}Mm=1, where M
is the number of test samples, by computing the probability
P (y|X,y,x) belonging to a class. For simple illustrating the
binary classification we consider here a target yi ∈ {−1,+1}.
The binary classification is easily extended to multiple classi-
fication by using the one-against-all or one-against-one strat-
egy.

GP models generate a discrete label yi for a data point xi
via a continuous latent variable fi. A likelihood model p(y|f)
characterizes the monotonic relationship between latent vari-
able f and the probably observed annotation y. The logis-
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(a) Indian Pines (b) Groundtruth (c) Linear (d) Polynomial

(e) Radial basis function kernel (f) Automatic relevance determina-
tion

(g) Neural network (h) Rational quadratic

Fig. 1. (a) Data of Indian Pines, (b) ground truth, and classification results of kernel (c) linear, (d) polynomial, (e) RBF, (f)
ARD, (g) NN, (h) RQ.

tic and probit function are the most common choices. Their
forms are:

ϕlogit(z) =
1

1 + e−z
, (1)

ϕprobit(z) =

∫ z

−∞

1√
2π
exp(−x

2

2
)dx. (2)

Specially, from the equation we can see that the probit func-
tion is simply the standard normal cumulative distribution
function. The likelihood term is written as:

p(yi = +1|fi) = ϕ(yifi), (3)

An integrating over the latent variable f to predict the
probability for sample xi is executed as follows:

p(yi = +1|X,y,xi) =

∫
p(yi|fi)p(fi|X,y,xi)dfi (4)

where p(fi|X,y,xi) is the distribution of latent variable fi
corresponding to xi, which can be obtained by integrating
over the latent variable F = (F1, . . . , Fn) corresponding to
training set (X,y):

p(fi|X,y,xi) =

∫
p(fi|X,y,xi,F)p(F|X,y)dF (5)

where p(F|X,y) = p(F|y)p(F|X) / p(y|X) is the poste-
rior over the latent variables. p(y|X) is the marginal likeli-
hood (evidence) and p(F|X) is the GP prior over the latent

function, which in GP model is a jointly zero mean Gaussian
distribution and with the covariance given by the kernel K.

2.2. Kernel functions for GP models

The non-Gaussian likelihood p(F|X,y) in Eq. (5) makes
the integral analytically intractable. Similarly, Eq.4 might
be also analytically intractable for certain sigmoid functions
p(yi|fi). To solve this problem, a number of approxima-
tions have been suggested. The Monte Carlo Markov Chain
(MCMC) sampling is a standard procedure for posterior in-
ference, but it is computation expensive. Under Gaussian pro-
cess models, two analytic approximation approaches are com-
monly applied: Laplace’s approximation method (LP) [5] and
expectation propagation (EP) algorithm [6]. They both ap-
proximate the non-Gaussian joint posterior with a Gaussian
one. In this thesis, the LP method will be adopted because
of its less computation and easier inference. Interested read-
ers are referred to [7] for more details on the two methods.
Then, the posterior for latent fi in Eq. (5) is approximated as
a Gaussian

q(fi|X,y,xi) = N (µi, σ
2
i), (6)

µi = k(xi)
TK−F̃, (7)

σ2
i = k(xi,xi)− k(xi)

T (K + W−)k(xi), (8)
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Table 2. Individual class, OA and AA accuracies in percentage of the Indian Pines data set with different classifiers.
Class Linear Poly RBF ARD NN RQ
Corn-notill 73.45 77.69 78.26 79.72 77.77 78.01
Corn-mintill 71.27 80.48 80.79 90.26 80.63 80.79
Grass-pasture 90.81 93.76 95.41 96.48 94.35 95.41
Grass-Trees 98.87 99.25 99.43 98.80 99.06 99.62
Hay-windrowed 98.20 99.64 100 100 98.92 99.64
Soybean-notill 81.09 83.46 87.31 89.25 86.14 87.56
Soybean-mintill 60.84 68.82 71.44 78.46 69.93 71.31
Soybean-clean till 90.08 93.13 93.63 94.60 93.64 93.38
Woods 98.22 97.84 99.50 99.16 98.31 97.84
OA 78.06 81.39 85.5 87.06 83.23 83.87
AA 84.76 88.56 89.53 91.86 88.75 89.29

where W
4
= −∇∇ log p(Y|F̃) is diagonal. K denotes aN −

by − N covariance matrix between N training points. k(xi)
is a covariance vector between N training points X and a test
point xi and k(xi,xi) is covariance for test point xi and F̃ =
arg maxF p(F|X,Y). Given the mean and variance of fi,
we can obtain the prediction probability in Eq. (4). Specially,
if the probit function is chosen, the integration in Eq. (4) is
much easier.

The kernel function is the crucial ingredient in GP predic-
tor and its hyperparameters Θ crucially affect its performance.
Table 1 gives a summary of several popular kernel functions.
In particular, the Gaussian radial basis function (RBF) is one
of the most widely used kernels because of its robustness for
different types of data:

KRBF (xi,xj) = σ2
0exp(−

‖xi − xj ‖2

2l2
) (9)

Θ = [σ2
0 , l] is the hyperparameter set for RBF, of which l in

the function is the characteristic length-scale. The smaller
l we choose, the more rapidly the function varies. More-
over, if l varies with input dimensions (i.e. input bands),
e.g., l = [l1, . . . , ld], there is another kernel called the Auto-
matic Relevance Determination (ARD) which is derived form
RBF:

KARD(xi,xj) = σ2
0exp(−

∑
b=1...d

‖xbi − xbj ‖2

2l2b
) (10)

xbi indicates the bth band of the ith input point. The ARD
has been proved to be an effective kernel successfully re-
moving irrelevant information [7]. It provides a parametriza-
tion scheme for automatic feature reduction especially for the
high-dimensional challenge such as HSI with more than one
hundred bands.

Another interesting kernel function is Neural Network

(NN) and its typical form is as follows [8]:

KNN = σ2
0 sin−1

 2x̃>
∑
x̃′√

(1 + 2x̃>
∑
x̃)(1 + 2x̃′>

∑
x̃′)


(11)

where x̃ = [1, x1, x2, . . . , xd]
T , and

∑̃
denotes a covariance

matrix that may take structural parameterization. The impor-
tance of the NN kernel lies in that a GP model with this kernel
is equivalent an infinite Bayesian NN with the probit transfer
function.

3. EXPERIMENTAL RESULTS

In the experiments, three benchmark hyperspectral datasets-
INDIAN PINES, UNIVERSITY OF PAVIA, and CENTER
OF PAVIA will be exploited for the assessment of Gaussian
Process classification (GPC) performance with different ker-
nels. These datasets have been widely used as benchmark [3,
4, 1, 2] in the study of hyperspectral image classification. The
INDIAN PINES dataset was acquired by the AVIRIS in 1992
and taken over a predominately agricultural region in NW In-
diana, USA. The dataset is a 145 × 145 pixels scene and has

Table 3. Individual class percentage accuracies of the Uni-
versity of Pavia dataset with different classifiers.

Class Linear Poly RBF ARD NN RQ
Asphalt 78.37 82.04 82.09 84.61 81.59 82.54
Meadows 87.18 90.02 91.06 92.39 90.67 90.98
Gravel 79.04 82.52 84.89 84.41 84.89 85.15
Trees 93.51 96.51 96.68 96.02 96.89 96.65
Metal 98.95 99.21 99.30 99.21 99.65 99.30
Bare Soil 78.40 93.11 92.05 93.21 89.96 92.36
Bitumen 86.20 92.57 95.75 92.57 95.40 95.49
Bricks 78.37 94.96 87.05 85.12 85.90 87.16
Shadow 99.87 100 100 100 100 100
OA 84.61 89.44 90.06 90.87 83.23 90.14
AA 86.65 91.53 92.10 91.95 88.75 92.18
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200 channels. Seven of the 16 different land-cover classes in
the original ground-truth were removed, which can offer only
a few training samples (this makes the experimental analysis
more significant from the statistical viewpoint) [3]. The CEN-
TER OF PAVIA image lies around the center of Pavia with
1096 × 492 pixels and remains 102 channels after removing
some noisy bands. The ground-truth consists of 9 land-cover
classes. The UNIVERSITY OF PAVIA dataset has 103 chan-
nels with 610× 340 pixels and also 9 land-cover classes. For
each dataset, 200 points of each class were randomly selected
as training data and the rest points were test data. If the the
amount of data points of any classes are less than 200, 50%
of its points were selected as training data. All kernels listed
in Table 1 were adopted in the GP models for comparison
purpose and their hyperperameters were optimized by adopt-
ing Conjugate Gradient method [9] based on the Laplace ap-
proximation method. In order to simplify the classification
and balance the samples problems, the one-against-one strat-
egy was applied.

The original image and ground truth of Indian Pines
dataset are shown in Fig. 1(a) and Fig. 1(b) respectively.
From Fig. 1(c) to Fig. 1(h) are the classification results of
GP model with different kernel functions. Table 2 shows the
individual class accuracy, overall accuracy (OA) and average
accuracy (AA) of GPC with different kernel functions from
the Indian Pines dataset. The results show that the ARD ker-
nel has the best accuracy. However, in order to optimize more
parameters for ARD kernel, more input dimensions increase
the training time rapidly. The classification accuracy of RBF
kernel and rational quadratic (RQ) kernel are similar. From
their expressions we know that the main difference between
them lies in the exponents. After optimizing hyperparameter,
γ of RQ varies nearby 2 with high probability in this scene.
Hence their results are close. However, because γ can change
according to different data, RQ is more flexible than RBF in
real application. The NN kernel performs relatively well. It
provides an effective solution for GPC. The performance of
polynomial kernel is not very satisfactory, yet it has a much
simpler expression and lower computation cost than the other
four discussed above kernels. The linear kernel has the worst
performance, because it cannot describe the similarity and
difference between two input feature vectors. But its compu-
tation cost is the lowest. For some simpler datasets, it may
give compatible performance with faster training. Table 3 and
Table 4 list the classification accuracy of individual class on
University of Pavia and Center of Pavia dataset, respectively.
From the tables we can see, different kernel functions has
different performance for different datasets and land-cover
classes.

4. CONCLUSION

This paper discussed the properties of several most popu-
lar kernel functions in GP models for classifying hyperspec-

Table 4. Individual class percentage accuracies of the Center
of Pavia dataset with different classifiers.

Class Linear Poly RBF ARD NN RQ
Water 99.82 99.79 99.79 99.77 99.89 99.79
Trees 94.25 94.66 94.83 92.69 95.517 94.86
Asphalt 95.45 97.45 97.34 96.08 96.97 97.34
Bricks 87.84 94.33 94.69 96.03 94.64 95.00
Bitumen 92.63 95.75 96.60 96.19 91.16 96.65
Tiles 97.35 97.89 97.66 97.51 97.66 97.77
Shadow 85.37 88.83 89.84 91.72 89.52 89.77
Meadows 99.45 99.62 99.66 99.56 99.62 99.66
Bare Soil 99.90 99.90 99.95 99.90 99.90 99.95
OA 97.48 98.15 98.27 98.21 98.32 98.29
AA 94.67 96.47 96.71 96.60 96.65 96.75

tral images. Their performances are evaluated for classifying
three benchmark hyperspectral image datasets in terms of ac-
curacy. This work will be a reference for the kernel selection
of GPs for classifying hyperspectral images.
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