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Figure 1: Real world scenario of KTH database [9]. Left: frames 115, 136 and 143 of Sequence 1 from Football Dataset II.
Right: 3D reconstruction using our proposed method

Abstract

This paper tackles the problem of estimating non-rigid
human 3D shape and motion from image sequences taken
by uncalibrated cameras. Similar to other state-of-the-art
solutions we factorize 2D observations in camera param-
eters, base poses and mixing coefficients. Existing meth-
ods require sufficient camera motion during the sequence
to achieve a correct 3D reconstruction. To obtain convinc-
ing 3D reconstructions from arbitrary camera motion, our
method is based on a-priorly trained base poses. We show
that strong periodic assumptions on the coefficients can be
used to define an efficient and accurate algorithm for esti-
mating periodic motion such as walking patterns. For the
extension to non-periodic motion we propose our novel reg-
ularization term based on temporal bone length constancy.
In contrast to other works, the proposed method does not
use a predefined skeleton or anthropometric constraints and
can handle arbitrary camera motion.

Multiple experiments based on a 3D error metric demon-
strate the stability of the proposed method. Compared to
other state-of-the-art methods our algorithm shows a sig-
nificant improvement.

1. Introduction

The recovery of 3D human poses in monocular image
sequences is an inherently ill-posed problem, since the ob-
served projection on a 2D image can be explained by mul-
tiple 3D poses and camera positions. Nevertheless experi-
ence allows a human observer to estimate the pose of a hu-
man body, even with a single eye. The purpose of this paper
is to achieve a correct 3D reconstruction of human motion
from monocular image sequences as shown in Fig. 1.

Recent works considering the non-rigid structure from
motion problem (e.g. [6, 7, 8]) work well as long as there
is a camera rotation around the observed object. Due to
ambiguity in camera placement and 3D shape deformation
they fail in realistic scenes such as a fixed camera filming
a person walking by as shown in Fig. 2. Several single
image pose recovery approaches (e.g. [3, 11, 13, 20]) use
strong constraints on the observed shape to overcome this
problem. These methods achieve acceptable results but are
too restrictive for general 3D reconstructions as they limit
the solution to a predefined skeleton. Obviously, applying
these single image approaches for image sequences results
in an unstable 3D motion reconstruction.

In this paper, we use a trilinear factorization approach
similar to [7, 10, 11, 20]. We assume that a set of feature
points on the skeleton of the person is tracked throughout
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the sequence. Our goal is to decompose it into three fac-
tors for camera motion, base poses and mixing coefficients.
Different to [7] and [10], we keep the second factor fixed
which corresponds to 3D structure, similar to [11] and [20].
Furthermore, we propose to regularize the third factor, com-
monly interpreted as the mixing coefficients: Firstly, we
impose a prior well suited for periodic motion. Secondly,
constraints on the limb lengths are applied. As opposed to
[11] and [20] where lengths or relations of particular limbs
need to be a-priorly known, we constrain the limbs lengths
to be invariant.

We demonstrate that our algorithm works on motion cap-
ture data (CMU MoCap [4], HumanEva [12]) as well as on
challenging real world data as for example the KTH Foot-
ball Dataset [9] shown in Figure 1. Additionally we are
analyzing the influence of the number of base poses and the
regularization factor on the reconstruction result.

Our method allows to correctly reconstruct 3D human
motion from feature tracks in monocular image sequences
with arbitrary camera motion. It does not use a predefined
skeleton or anthropometric constraints. Summarizing, the
contributions of this paper are as follows:

• A periodic model for the mixing coefficients for peri-
odic and quasi-periodic motions such as walking

• A novel regularization term for non-periodic motions

2. Related Work
The factorization of a set of 2D points tracked over a

sequence of images was proposed by Tomasi and Kanade
[14]. It rests upon the idea that the input data is decom-
posed into two sets of variables, one of which is associated
with the motion parameters, the other with the coordinates
of the rigid 3D structure. This algorithm was generalized
to deforming shapes by Bregler et al. [2] by expressing the
observed shape in any particular image as a linear combina-
tion of multiple rigid basis shapes. Xiao et al. [21] showed
that this decomposition is non-unique. They extended a
well-known problem of rigid 3D reconstruction, namely the
problem of self-calibration, to the non-rigid case. Akther
et al. [1] showed that the solution proposed in [21] still
is ambiguous. Torresani et al. [15, 16, 17] independently
proposed to avoid the troublesome step of non-rigid self-
calibration by imposing a Gaussian prior on the linear mix-
ing coefficients. Akhter et al. [1] built on this idea and
fixed the linear coefficients in advance by selecting them
from a cosine function. This approach both adds a strong
prior that the non-rigidity can be explained by periodic base
function, and it also determines in advance the frequencies
that the observations need to satisfy. Gotardo and Martinez
later extended this approach by assuming smoothly moving
cameras [6, 7, 8] and 3D points. Li introduced an approach

Figure 2: 3D reconstruction (green circles, blue lines) and
ground truth data (red crosses). Top: Using approach of Go-
tardo and Martinez [8]. Most non-rigid structure from mo-
tion approaches with no rotation and unknown base poses
fail, although they produce a small reprojection error (left).
From other perspectives (right) a wrong reconstruction can
be observed. Bottom: Our approach. Correct reconstruction
in all views.

based on L1-minimization [5] where the number of mixing
coefficients that are non-zero is minimized.

Several works have been proposed regarding the 3D
reconstruction of human poses given single images only
[3, 11, 13, 20]. State-of-the-art methods such as the work
of Ramakrishna et al. [11] represent a 3D pose by a linear
combination of a set of base poses that are learned from mo-
tion databases. They are minimizing the reprojection error
using the sum of squared limb lengths as constraint. This is
a very weak constraint considering all the possible but in-
correct poses which satisfy this constraint. Wang et al. [20]
extended that model. Different to [11] they enforce the pro-
portions of eight selected limbs to be constant. However,
limb proportions differ from one person to another.

3. Our Approach

Our approach consists of three main steps (see Figure 3).
First we assume, that every 2D motion sequence can be fac-
torized in a camera model and a series of 3D poses (sec-
tion 3.1), like in standard structure from motion approaches.
The 3D poses are composed of a linear combination of
base poses, that are retrieved by a PCA on different mo-
tion databases (section 4.1). To model periodic motion (eg.
walking and running), we show that it is possible, to as-
sume a periodic weight for the base poses to significantly
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Figure 3: Our method. (1) First we are learning 3D base
poses from training data. (2) Input sequence. (3) Cameras
are recovered from estimated 3D poses and 2D poses. (4)
Weights for base poses are calculated by minimizing the
reprojection error. Steps (3) and (4) are alternated until the
algorithm converges

reduce the number of variables, that have to be calculated
(section 3.3). Our algorithm (section 3.5) is alternatingly
recovering the camera matrices (section 3.2) and the 3D
poses. Our extension to non-periodic motion calculates the
weights for the base poses for each frame. We handle the
large number of variables by using a regularization term en-
forcing bone length constancy over time. This leads to a
highly realistic 3D reconstruction of different types of non-
periodic motion (section 3.4).

3.1. Factorization model

A single 3-dimensional pose P ∈ R4×a with a joints in
homogeneous coordinates can be written as a linear combi-
nation of k previously learned base posesQl ∈ R4×a

P = Q0 +

k∑
l=1

θlQl, (1)

where Q0 is the mean pose of all poses used for training
and θl ∈ R4×4 is the weight matrix for the base pose Ql.
With ϑl as the scalar weight for the l-th base pose each θl
has the form

θl =

(
ϑlI3

0

)
, (2)

where I3 is the 3 × 3 identity matrix. Note that only the
coordinates in the mean pose Q0 are describing a point in
homogeneous coordinates, whileQ1,...,k are directions that
define deformations. By stacking poses we can write a 3D
sequence as W ∈ R4f×a of f images, with P1,...,f as the
poses in frames 1, . . . , f

W =

 P1

...
Pf

 . (3)

With Eq. (1) we can do a factorization

W =

 Q0 +
∑k
l=1 θl,1Ql

...
Q0 +

∑k
l=1 θl,fQl

 = Θ


Q0

Q1

...
Qk

 = ΘQ,

(4)
where Θ ∈ R4f×4k contains the weight matrices θl.

The projection of a 3D pose Pi in the i-th frame to
a 2D pose Pi,2D ∈ R2×a is done by the camera matrix
Mi ∈ R2×4

Pi,2D =MiPi. (5)

To project the whole 3D sequence described by the matrix
W , the camera matrix M ∈ R2f×4f is used. Let M be a
sparse block diagonal matrix

M =

 M1

. . .
Mf

 . (6)

The factorization of a 2D sequence given by the matrix
W2D ∈ R2f×a can now be written as

W2D =MΘQ. (7)

This model is very similar to the models proposed by [2],
[10] and [7]. While they are fixing Θ and optimize for M
and Q, our approach is using a previously learned Q and
optimize for the weights Θ like [11] and [20] did for single
images.

3.2. Camera Parameter Estimation

To reconstruct the camera parameters we are assuming a
weak perspective camera. The pose in the i-th frame wi

2D

can be factorized with the above notation as

wi
2D =MiΘiQ, (8)

where Θi ∈ R4×4k denotes the weight matrix for this
frame. For the estimation of the camera parameters we as-
sume the 3D pose described by ΘiQ to be known. The
solution for the camera matrices for each frame can be ob-
tained by least squares minimization of the reprojection er-
ror

min
Mi

∣∣∣∣wi
2D −MiΘiQ

∣∣∣∣
F
. (9)

Considering the entries in

Mi =

(
m11 m12 m13 m14

m21 m22 m23 m24

)
(10)

we can enforce a weak perspective camera by the con-
straints

m2
11 +m2

12 +m2
13 − (m2

21 +m2
22 +m2

23) = 0 (11)

and
m11m21 +m12m22 +m13m23 = 0. (12)
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Figure 4: Temporal behavior of bone lengths obtained by
unconstrained optimization. The maximal variation is about
40mm.

3.3. Periodic Motion

With the camera matrix M calculated as described in
Section 3.2 the weights Θ for the base poses can be re-
constructed. Trying to optimize the reprojection error for
all variables in Θ fails, as there are too many degrees of
freedom. For periodic motion the number of unknowns can
be reduced by using a sine-function to model the temporal
behavior of the weights in Θ. This assumption has been
shown to be appropriate for periodic motion (for instance
gait sequences [18, 19]).

As shown in Section 3.1 the number of unknowns in Θ
equals fk. By modeling the temporal behavior of ϑ as

ϑ(t) = α sin(ωt+ ϕ) (13)

the number of unknowns can be decreased to 3k. Note that
the number of variables does not depend on the number of
frames anymore yet only on the number of base poses. We
can thus minimize the 2D reprojection error

min
α,ω,ϕ

||W2D −MΘQ||F . (14)

3.4. Non-Periodic Motion

To model non-periodic motion, periodic functions for the
weights of the base poses are not applicable anymore. Try-
ing to optimize all weights at once without constraints gives
good results for the 2D reprojection, but does not ensure a
realistic 3D reconstruction. Figure 4 shows the temporal
behavior of the bone lengths using the unconstrained opti-
mization. There are variations in lengths up to 40mm. This
is caused by a slightly wrong initial camera position, which
the optimizer later tries to compensate by weighting base
poses wrong. It results in a 3D reconstruction where unre-
alistic bone length changes occur. To compensate this we
propose a regularization term, which holds the bone lengths

constant over time. Different to [11] and [20] we are not us-
ing bone length constraints. Such a constraint would restrict
the model to a particular person.

The length of a bone is defined by the euclidean distance
between the 3D joint coordinates of that bone. These can be
directly obtained from the 3D reconstruction described by
ΘQ. We denote the length of bone s as

bs = ||js,2 − js,1||2 , (15)

where js,1 and js,2 are the coordinates of the endpoints of
that bone. We want to hold the bone lengths nearly constant
over time to ensure a realistic reconstructed skeleton, but
do not want to be too restrictive to the optimizer. In other
words the bone lengths should not change much. In the
optimal case they are not changing at all. We are using the
variance of the length changes over time of each bone as a
measure. To build the regularization term rB , we sum the
variances V ar(•) of all bone lengths over time

rB = β
∑
i

V ar(bi), (16)

with β as the regularization parameter. This regularizer
holds the bone length constant but is not fixing it to a spe-
cific value. So the optimization problem can be written as

min
Θ
||W2D −MΘQ||F + rB . (17)

3.5. Algorithm

To estimate the two factors M and Θ we alternatingly
optimize for each factor while keeping the other fixed. In
the first iteration we use the mean pose as initialization.
This means setting all values in Θ to zero except the ones
weighting the mean pose Q0. With that the initial cam-
eras are estimated framewise as described in Section 3.2.
The optimization for the weights of the base poses follows.
This step is depending on whether we are using the periodic
(Section 3.3) or the non-periodic model (Section 3.4). The
last two steps are repeated until the reprojection error is not
changing anymore.

Algorithm 1 Recover camera and shape

Q← base shapes
while no convergence do

for i = 1→ f do
calculate starting values forMi

optimize ||wi
2D −MiΘiQ||F

insertMi inM
end for
optimize ‖W −MΘQ‖F + rB

end while



3
D

 e
rr

o
r 

(c
m

)

regularization parameter
0 20 40 60 80

4

5

6

7

8

9

10

0 20 40 60 80

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2
D

 e
rr

o
r 

(p
x
)

Figure 5: 2D reprojection error and 3D reconstruction error
with different regularization parameter β. While the 2D er-
ror is not changing much or getting worse, the 3D error gets
significantly better at most parameter values.

4. Experimental Results
To evaluate our method, we were using three different

databases: CMU MoCap [4], HumanEva [12] and KTH
Football [9]. We trained our algorithm on different mo-
tion categories, for example walking, jogging, running and
jumping to demonstrate the generality of our method.

Instead of the reprojection error we define a 3D error e
as evaluation criterion

e =
1

f
||Win −Wrec||F , (18)

with Win as the real 3D data and Wrec as the reconstruc-
tion. To compare sequences of different lengths, we are di-
viding the error by the number of frames f . As shown in
Section 2, the reprojection error is a bad criterion for judg-
ing a 3D reconstruction. Therefore it is important to use the
3D error instead of the reprojection error when evaluating
3D reconstructions. With our bone length regularizer we
achieve a worse reprojection error but a significantly better
3D reconstruction (see Figure 5). While the reprojection er-
ror remains nearly constant for values of the regularization
parameters up to 60, the 3D error is getting better. Only
for very high values both errors are getting worse. This is
further evaluated in Section 4.4.

4.1. Learning base poses

For learning the base poses we were using different
databases: the well-known CMU Motion Capture Database
[4], the HumanEva dataset [12] and as a real world example
the KTH Football Dataset II [9]. These three databases are
using slightly different joint annotations, so it is important
to learn the base poses for each database separately.

We are learning the base poses by stacking pose vec-
tors of all frames and executing a PCA on this matrix. For
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Figure 6: The number of used base poses is crucial for a
good 3D reconstruction. Using more than 10 base poses for
each motion category worsens the reconstruction error. For
better visibility, the errors are normalized on the 3D error
when using 2 base poses.

each of the used motion categories a linear combination of
the first ten eigenvectors obtained by the PCA is enough to
cover more than 99% of the variance in the dataset. It is also
possible to learn base poses for multiple motions at once. If
doing so, the number of base poses should be increased to
be able to fully cover all possible motions. The influence of
the used number of base poses on the reconstruction result
is evaluated later in Section 4.3.

4.2. Periodic Motion

As shown in Section 3.3, the number of unknowns can be
reduced when using periodic base functions. This results in
a much faster solving of the optimization problem. Figure 9
shows some frames of a reconstruction of a gait sequence
by just using four base poses. Even with only 12 unknowns
to optimize the reconstruction is very close to the real 3D
data. Note that the number of variables does not depend on
the number of frames. That means that the computational
effort does not increase much if longer sequences are used
as long as the motion does not change. The reconstruction
of the shown sequence of 450 frames took about 15 seconds,
which is about two magnitudes faster than the non-periodic
reconstruction on the same sequence. For periodic motion
this method is a very fast and efficient way for the 3D re-
construction.

4.3. Number of base poses

One of the main questions is how many base poses
should be used to achieve a good reconstruction. More
base poses can model more deformation but using too many
results in more degrees of freedom for the optimization,
which can cause unnatural deformation. For simple peri-
odic motion, such as walking, four base poses appear to be
enough and more just worsen the reconstruction (see Fig-
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Figure 7: Influence of the regularization parameter β on the
normalized 3D error. In a wide range, the reconstruction
improves (left of dotted line) if the regularizer is used as
compared to optimization without it (β = 0)

ure 6). The range from 4 to 10 base poses gives the best
reconstruction results. On the test data sets six base poses
appear to be the optimum. Again, it is very important to
look at the 3D error, because the reprojection error reduces
if the more base poses are used, but the reconstruction wors-
ens as shown in Figure 6.

4.4. Influence of regularization

Figure 7 shows the influence of the regularizer on the
3D reconstruction for the motion categories walk, run and
jump. For better comparability the error is normalized for
each motion class on the error value without regularization.
Even a small value for the parameter causes a significant
improvement of the 3D reconstruction. In a wide range of
parameter settings the reconstruction is much better with the
regularizer than without it. The selection of values for the
regularization factor is crucial. If the value is too high, the
reconstruction is getting worse. Using a too strong factor
causes the reconstruction to not move at all over time. This
is an expectable behavior in sense of constant bone lengths,
but unwanted for a realistic 3D reconstruction.

A comparison of the temporal behavior of the bone
lengths of the same sequence with different values for the
regularization factor is shown in Figure 8. The bone lengths
of the periodic reconstruction (left) are fluctuating heavily.
The middle image shows the best non-periodic reconstruc-
tion in terms of the 3D error. The fluctuation is less than the
one of the periodic reconstruction. The maximal difference
in bone length is about 8mm. Considering possible noisy
measurements, this should be an acceptable value. On the
right the bone lengths are not changing much, but the 3D
error is bigger than in the middle.

4.5. Different Motion classes

We trained our algorithm on multiple motion classes
including periodic (walking, running, jogging) and non-
periodic motions (jump up/forward). Also different data
sets were used (CMU MoCap [4], HumanEva [12], KTH
Football [9]). Table 1 shows the 3D reconstruction error
of our different methods on some of the used motion se-
quences compared to the results of Bregler [2] and Gotardo
and Martinez [8]. The used error metric is explained in
Section 4. It is noticeable that the reconstruction results
of the jumping sequences are worse compared to the other
sequences. The reason is that the difference between two
jumping persons is much bigger than between two walk-
ing persons. So this difference is not covered that much
in the training set. Nevertheless the reconstructions appear
to be very realistic (see Figure 11). All results except the
row labeled ”np all” are obtained by training on the specific
motion categories. When training all motions at once (here
we are using walk, run, jog, jump up, jump forward) to get
more general base poses, the results are getting worse but
still stay realistic.

Method walk run jump HE KTH
periodic 0.784 0.968 - 1.200 0.357
np (β = 0) 0.295 0.661 1.226 0.564 0.292
best 0.183 0.523 1.090 0.423 0.187
np all 0.334 2.805 1.313 - -
[2] 4.557 10.821 8.531 17.824 4.427
[8] 16.359 11.395 17.139 5.714 14.673

Table 1: Average 3D reconstruction error in cm on the
CMU dataset (walk, run, jump), HumanEva walking dataset
(HE) and KTH Football dataset.

5. Conclusion

We presented a new method for the 3D reconstruction
of human motion. Using periodic functions to model the
weights of the base poses turned out to be very effective and
stable on periodic motion. Reconstruction of non-periodic
motion was successfully done with our new regularization
term. We showed the generality of our approach on multi-
ple common datasets with different motion types. It even
performs well on the noisy real world data of the KTH
dataset. Our 3D reconstructions are highly realistic, which
was shown by surveying the 3D error. In Figures 9, 10, 11
and 12 are some of the reconstructed motions of the CMU
MoCap database and the HumanEva dataset. Figure 9 uses
the periodic reconstruction with only 4 base poses. Fig-
ure 10, 11 and 12 are using the non-periodic approach.
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Figure 8: Comparison of the temporal behavior of the bone lengths with different regularization factors. Left: periodic
reconstruction. Middle: Non-periodic reconstruction with best 3D error. Right: Non-periodic reconstruction with very high
regularization factor; bone lengths are nearly constant over time but the 3D error is larger
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Figure 9: Walking sequence 35/02 of the CMU MoCap data set reconstructed with the periodic reconstruction using only 4
base poses

Figure 10: Running sequence 35/17 of the CMU MoCap data set reconstructed with the non-periodic reconstruction

Figure 11: Jumping sequence 13/11 of the CMU MoCap data set with the non-periodic reconstruction

Figure 12: Boxing sequence of the HumanEva data set with the non-periodic reconstruction


