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1. Introduction
Many computer vision tasks are related to the problem

of understanding the semantic content of a scene from a
video sequence. Humans are often the center of attention
of a scene, therefore, the ability to detect and track multiple
people from a video has emerged as one of the top tasks to
address in our field. A common approach to multiple people
tracking follows the idea of estimating the hypotheses of the
locations of people using a detector for each frame. Those
hypotheses are then associated in time, so as to form consis-
tent tracks for each individual. Recent works show that it is
more reliable to jointly solve the data association problem
for all tracks and all frames, either in discrete space using
Linear Programming (LP) [9, 4] or in continuous space [6].
Most tracking systems work with the assumption that the
motion model for each target is independent, but in reality,
a pedestrian follows a series of social rules, i.e. is subject
to social forces according to other moving targets around
him/her. These have been defined in what is called the social
force model (SFM), which has been recently used for multi-
ple people tracking [4, 7]. One of the problems in tracking-
by-detection methods is that they are highly dependent on
detection results. Methods that use a physical model to esti-
mate pedestrians’ motion [4, 7] are completely unaware of
the effect of undetected pedestrians, which reduces its ef-
fectiveness in semi-crowded environments, where it is very
common to observe occlusions and it is very hard to esti-
mate a pedestrian’s trajectory.

We propose to construct a model that estimates how a
pedestrian moves according to the motion and appearance
features around him/her. We introduce the interaction fea-
ture strings which are used in a Random Forest (RF) frame-
work [1] trained to estimate the velocity of a pedestrian at
a certain frame. A clear advantage of our method is that it
relaxes the dependency on detections, since the effect of a
partially occluded (and potentially not detected) pedestrian
can still be encoded in the interaction feature string, and not
ignored as in common tracking-by-detection methods.
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Figure 1: Diagram of the proposed approach.

2. Learning a motion model from interaction
feature strings

Our method is based on what we call interaction feature
strings, which encode image features that represent a par-
ticular scene configuration. A scene I(pt

i) is defined as a
patch centered around a detected pedestrian i at time t and
position (x, y) ∈ R2 in pixel coordinates. It has a size of
[hish, hisw], where hi represents the pedestrian’s height, sh
and sw are scaling factors. The patches are scaled according
to the pedestrian’s height to obtain a scale-invariant repre-
sentation that allows us to deal with scenes both closer and
further away from the camera.

We divide the scene in NB blocks and compute a set
of features per block. For different types of interactions
between pedestrians, different blocks will contribute to de-
scribing the scene. For example, in a scene where a pedes-
trian walks alone, the central blocks will contain most of the
relevant information. If there are more pedestrians involved
in a scene, the outer blocks will become more and more rel-
evant. For each of the blocks, we compute several descrip-
tive features Fb(p

t
i) =
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RNf , where Nf is the total number of feature channels
per block and b is the block index. We concatenate the
block features into one interaction feature string F(pt

i) =
{Fb(p

t
i)}

NB

b=1. The features we use include: (i) Mean Op-
tical Flow (MOF) of NFR frames, (ii) Difference of Op-
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Figure 2: Histogram of velocity estimation errors given by:
(a) Optical Flow, (b) Social Force Model, (c) Proposed ap-
proach. Mean results on the 4 datasets.

tical Flows (DOF) between each pair of frames from t to
t + NFR, (iii) Histogram of Optical Flows (HOF), (iv)
Ternary Optical Flow (TOF) which compares the norm of
the optical flow of frame t and frame t+NFR and encodes
it with values {0, 1,−1} and (v) Ternary Angular Optical
Flow (TOAF) which does the same comparison for the an-
gle of optical flows. Note that we do not compensate for
camera motion, and therefore it is included in our feature
strings and will also be taken into account in the pedestrian
velocity estimation. This is an important property of our
feature strings, since we are tracking in image coordinates.
Once we have a descriptive set of features for a scene, the
goal is to train a Hough Random Forest [1] to be able to es-
timate the velocity of a pedestrian. This information is then
used in a probabilistic tracking framework, such as Linear
Programming [4, 9], to obtain the final set of trajectories.
We refer the reader to [3] for more details.

3. Experimental results
In order to evaluate the multiple people tracking per-

formance of the proposed algorithm, we use four publicly
available datasets: BAHNHOF, SUNNYDAY, JELMOLI,
and LINTHESCHER from [2]. The datasets are taken from
a mobile camera moving around in crowded scenarios.

This first experiment aims at showing how well our ap-
proach estimates the velocity of a pedestrian. The setup of
this experiment is the following: we use one sequence for
testing and the other three for training. We compare the per-
formance of our method with two baselines: (i) the Social
Force Model (SFM) [4, 7] and (ii) the Optical Flow (OF).
In Figure 2 we plot the quantized relative frequency of the

Method Rec. Prec. MT PT ML Frg Ids
Zhang et al. [9] 74.6 77.8 55.6 38.1 6.2 178 138
Leal-Taixé et al. [4] 74.1 75.3 55.1 36.9 7.9 184 131
Pellegrini et al. [7] 72.3 84.1 51.6 42.7 5.6 206 77
Milan et al. [6] 77.3 87.2 66.4 25.4 8.2 69 57
Yang & Nevatia [8] 79.0 90.4 68.0 24.8 7.2 19 11
LP + 2D 80.7 83.6 64.1 29.6 6.2 91 70
LP + OF 76.1 80.2 55.9 33.5 10.5 104 75
Proposed 83.8 79.7 72.0 23.3 4.7 85 71

Table 1: Results on BAHNHOF and SUNNYDAY datasets.
MT = mostly tracked. PT = partially tracked. ML = mostly
lost. Frg = fragmented tracks. Ids = identity switches.

Figure 3: The green arrow indicates the ground truth veloc-
ity of the pedestrian, and in red we plot the votes made by
the corresponding leafs of the learned RF.

velocity estimation errors in degrees. As we can see, our
method makes more than 50% of the estimations with less
than 10 degrees of error, compared to 20% of OF and 30%
of SFM.

In the second experiment, we use the learned model for
multiple people tracking. We compare the results with 5
state-of-the-art tracking algorithms and two baselines using
the same LP formulation as presented in this paper: (i) LP
+ 2D: only uses pixel distance to solve the data association
problem, (ii) LP + OF: uses pedestrian velocity estimation
coming only from Optical Flow. We use the same detections
and the metrics described in [5]. We show the comparative
results averaged for both datasets in Table 1. As we can see,
our method obtains the highest recall rate, outperforming
state-of-the-art by almost 5%. Even if Optical Flow fea-
tures contain a lot of information on the pedestrian velocity,
their naive use leads to a poor performance as shown by the
results obtained with LP+OF. This shows that the proposed
method is able to take the most out of a feature channel
(OF) that on its own is not able to provide good velocity
estimations.
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