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ETH Zürich
leal@geod.baug.ethz.ch

Bodo Rosenhahn
Institut für Informationsverarbeitung

Universität Hannover
rosenhahn@tnt.uni-hannover.de

1. Introduction
For many applications of computer vision, it is neces-

sary to localize and track humans that appear in a video
sequence. Multiple people tracking has thus evolved as an
ongoing research topic in the computer vision domain.

A commonly used approach to solve the data associa-
tion problem within the tracking task is to apply a hierarchi-
cal tracklet framework [5]. Although there has been great
progress in such a model, mainly due to its good bootstrap-
ping capabilities, so far little attention has been drawn to
improve the quality of the tracklets itself.

A main issue of the hierarchical frameworks, as used in
the common literature, is that they make hard decisions at
each iteration of the association step. Especially in ambigu-
ous situations, tracklets are still being merged or removed
so that the system is prone to error propagation. To avoid
these problems, we propose a new framework where unreli-
able decisions are prevented. Instead, unclear aggregations
are being postponed to a later iteration, when more infor-
mation is available. To maintain the possible associations
of tracklets in difficult situations, we propose a new trajec-
tory model, which we call tree tracklets (see Fig. 1).

While recent multiple people trackers model the associa-
tion problem mainly in a flow network (e.g. [6] [5]), we em-
ploy a rooted, directed and weighted graph G = (V,E,w)
which is of a simpler structure, in particular has fewer nodes
and edges. Thereby, we obtain the global-optimal solution
of each iteration in linear time in the number of nodes by
computing a minimum cost arborescence.

2. An improved hierarchical tracklet model
In order to obtain reliable tracklets, we process the se-

quence several times, until we observe convergence or some
threshold is reached. The node set V of the association

(a) Tree tracklets

Figure 1. A typical tree tracklet, maintaining possible aggrega-
tions. As the tracklets grow, they will contain enough information
to solve ambiguous situations.

graph G consists of all detections in the first iteration and
of all already computed tracklets in the ith iteration (i > 1),
respectively. Finally, we add a virtual start node Λ, hence
V = V ∪ {Λ} is the node set of G.

To model the start of a trajectory, we set E := {(Λ, v) |
v ∈ V }. All possible aggregations of tracklets are modeled
in the edge set E, that is, E connects each node v ∈ V to
those nodes v′ ∈ V , where the first detection of the tracklet
v′ and the last detection of the tracklet v are within a prede-
fined time-window T . Hence E := E ∪E is the edge set of
G.

The weights w(u, v) between any two nodes are defined
according to the affinities of the corresponding tracklets,
where w(Λ, v) for v ∈ V is defined as the likelihood of
v being the start of a person’s trajectory.

Now a tree tracklet Ψ is a connected subgraph Ψ ⊂ G
with indegree ≤ 1 in Ψ, for all of its nodes. Since there are
no restrictions on the outdegrees of the nodes of Ψ, a tree
tracklet can maintain several possible tracklet aggregations.

The purpose of the introduction of tree tracklets is to ex-
plain all current tracklets (or detections) as good as possi-
ble by connecting them in the most reasonable way. Thus



we use a maximum a posteriori probability estimate in or-
der to get the best coverage of the association graph by tree
tracklets, where we model the prior probability as a Markov
chain, similar to [8]. In particular, we consider the nega-
tive log likelihoods of the affinities, so that a minimization
returns the desired cover. It follows that the optimal tree
tracklets coverage is obtained by computing the minimum
cost arborescence G′ = (V,E′, w) of G, and removing the
edge set E from E′ afterwards. Note that a minimum cost
arborescence (MCA) can be seen as the minimum span-
ning tree problem, adapted to the case of a directed graph.
Edmond’s algorithm [2] provides a solution for rooted, di-
rected and weighted graphs; the result is computed inO(n2)
in the number of nodes n of G. However, since the graph G
is acyclic, the MCA G′ can be obtained in O(n) (see [4]).

Once G′ has been computed, we go through all nodes
of G′. For v ∈ V , let Nf(v) denote the set of neighboring
nodes of v, that appear at a later time, so Nf (v) := {v′ ∈
V | (v, v′) ∈ E′}. Now if the tracklet v is assigned to more
than one tracklet, then we cut off all these links, since there
is still an ambiguity which one is the correct aggregation.
Hence we set E′ := E′ \ {(v, v′) | v′ ∈ Nf (v)}. The
remaining tracklets are then the input for the next iteration
or the final result, respectively.

For more details on this tracking framework, we refer the
reader to [4].

3. Experiments

To evaluate the performance of the proposed framework,
we compute the trajectories on several publicly available
datasets: Bahnhof, Sunnyday [3] and TownCenter [1]. De-
tails on the used detections are given in [4].

3.1. Tracking Performance

Since we implemented the tracker using 3D detections,
we compare only to other state-of-the-art tracking frame-
works that are based on such detections.

Table 1 shows that the performance of the proposed
method is competitive with state-of-the-art tracking ap-
proaches. Especially on the semi-crowed TownCenter
dataset, our method shows a 6% higher Recall and a 13%
higher MT value, compared to the best method. At the same
time, the number of identity switches is decreased. Note
that our algorithm neither considers any special social mod-
eling as in [7, 6] nor any type of appearance model.

3.2. Runtime

Our tracking system is implemented as a non-optimized
Matlab code. On a sequence of 999 frames with 6536 de-
tections and 5 iterations, trajectories are computed in 8 sec-
onds on a 3.5 GHz machine (see Table 2). Having linear
time complexity at each iteration, the computational com-

Dataset Method Rec. Prec. MT PT ML Frg Ids

Bahnhof

[8] 67.6 70.9 43.7 46.8 9.6 176 39
[6] 73.3 75.4 51.1 41.5 7.4 155 107
[7] 71.6 84.9 46.8 48.9 4.3 173 62

Proposed 75.3 78.4 56.4 38.3 5.3 166 76

Sunnyday

[8] 76.8 70.6 73.3 16.7 10.0 39 9
[6] 78.1 75.3 73.3 16.7 10.0 29 24
[7] 75.5 80.5 66.6 23.3 10.1 33 15

Proposed 79.4 75.9 73.3 20.0 6.7 38 12

TownCenter

[8] 77.2 79.9 53.3 39.6 7.1 135 233
[6] 77.9 88.7 53.3 37.8 8.9 56 68
[7] 74.5 77.5 44.0 48.4 7.6 53 42

Proposed 83.8 81.2 66.7 23.1 10.2 70 41

Table 1. Tracking results on different datasets. MT = mostly
tracked. PT = partially tracked. ML = mostly lost. Frg = frag-
mented tracks. Ids = identity switches. Code for [8, 7, 6] were
provided by the authors of [6].

plexity isO(Kd), when performing K iterations with d ini-
tial detections. Note however, that the number of tracklets
decreases in most cases exponentially, resulting in a much
better runtime complexity.

Method Total runtime Graph creation Solver
Simplex [8] 16 9 7

Proposed 8 6 2

Table 2. Runtime in seconds of the algorithm on the Bahnhof
dataset (999 frames).
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[6] L. Leal-Taixé, G. Pons-Moll, and B. Rosenhahn. Every-
body needs somebody: Modeling social and grouping behav-
ior on a linear programming multiple people tracker. ICCV
Workshops. 1st Workshop on Modeling, Simulation and Visual
Analysis of Large Crowds, 2011.

[7] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool. You’ll
never walk alone: modeling social behavior for multi-target
tracking. In ICCV, 2009.

[8] L. Zhang, Y. Li, and R. Nevatia. Global data association for
multi-object tracking using network flows. In CVPR, 2008.


