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Abstract-In this paper, we propose a framework GP-MRF, 
which combines Gaussian processes (GPs) and Markov random 
field (MRF) for accurate classification of hyperspectral remote 
sensing image (HSI) data. This method exploits the relationship 
among adjacent pixels and integrates it into spectral information 
to obtain spectral-spatial classification. This framework consists 
of two steps. Firstly, a GP classifier (GPC) yields pixelwise pre­
dictive probability for each class. Secondly, an MRF is applied to 
extract spatial contextual information in the label map achieved in 
the first step. Then the classification results are inferred from the 
spectral-spatial information. By means of MRF regularization an 
enhanced classification result has been obtained. The experiments 
are performed on three hyperspectral benchmark datasets. The 
results from the GPC are compared with those obtained by state­
of-the-art classification approaches and demonstrate that, GP 
model is a competitive tool for classification of HSI in terms of 

accuracy. Furthermore, the experimental results indicate that our 
proposed method GP-MRF improves the classification accuracy 
of conventional GPC. 

I. INTRO DUCTION 

The abundant spectral information contained in hyperp­
sectral data enables the characterization, identification, and 
classification of the land-covers with improved accuracy and 
robustness. However, several critical problems are unevadable 
in classification of HSI, among which: 1) a great number 
of spectral bands and relatively a small number of labeled 
training samples, which poses the well-known Hughes phe­
nomenon [1]; 2) the spatial variability of the spectral signature; 
3) noisy environment; 4) The scene of different objects made 
by the same or similar material (e.g. the roofs of some build­
ings and the roads can be made by the same material, asphalt) 
makes it hard to distinguish different land-covers. Therefore, 
the contextual information is necessary for classification task 
of HSI. 

In recent years, some state-of-the-art methods have been 
successfully applied in the remote sensing community to 
classification task, such as support vector machine (SVM) [2] 
and random forest (RF) [3]. In particular, the kernel-based 
methods represented by SVM have been proved as an ex­
cellent classification approach for HSI in terms of accuracy 
and robustness [2][4]. The kernel-based methods have the 
inherent virtues: 1) handling high dimensional input spaces 
efficiently; 2) dealing with noisy samples in a robust way; 
3) work with a relatively low number of labeled training 
samples. These properties make them well-suited to tackle the 
classification problems of HSI. GPs are another representative 
of potentially promising kernel-based methods. They have 
been successfully applied to HSI classification and yielded 

comparable or even better performance than SVM in terms of 
accuracy [5]. Moreover, they provide truly probabilistic outputs 
with an explicit degree of prediction uncertainty. In contrast to 
non-probabilistic approaches, the probabilistic techniques have 
various advantages in practical recognition circumstances [6]. 
Furthermore, there exist algorithms for GP hyperparameter 
learning which are lacking in the SVM framework. Therefore, 
GP is more likely to yield better classification results. However, 
Bayesian GP methods have not received much attention from 
remote sensing image community. 

In order to alleviate the aforementioned spatial problems, 
it is necessary to exploit spatial contextual information to 
enhance the classification accuracy that is only based on 
spectral information. Markov random fields (MRFs) are ef­
fective probabilistic models to integrate spatial correlation of 
neighbours in a label image into a decision rule [7]. The 
maximum a posterior (MAP) decision rule is typically used 
in this framework [8]. In the MRF model, we assume that the 
class distribution of each pixel depends on a certain degree on 
its adjacent pixels. This assumption is reasonable because of 
two practical reasons: 1) adjacent pixels have mixed spectral 
response on the center pixel, especially the pixels near the 
borders (spatial boundaries); 2) in a HSI over an urban or 
suburban region, each land-cover type mostly arises in form of 
a patch, lump or local region. In mostly pixelwise classification 
results of HSI we observe that, many scattered pixels are 
assigned different labels from its adjacent pixels, or a small 
plot among a big region is classified as another land-cover 
type. Such classification results are normally suspectable. By 
means of combination of spectral information with spatial 
contextual information to construct a new decision rule the 
classification results can be modify and the accuracy will be 
clearly enhanced. 

In this paper, we present a GP- and MRF-based (GP-MRF) 
method for spectral-spatial classification of HSI. Firstly, a GP 
model is applied to obtain the label image of HSI and yield 
predictive probability of each pixel for each class. Secondly, 
spatial contextual information is extracted by MRF model 
based on the label map. Finally, the spectral information is 
integrated into spatial contextual information to construct a 
new decision rule and each pixel will be reclassified. The 
second and third steps will be repeated until the results satisfy 
a predefined criterion. 

This paper is outlined as follows. Section II briefly reviews 
the formulation of GPe and MRF, and then discusses how to 
combine this two methods. Section III presents and discusses 
the experimental results. We conclude the paper in Section IV. 
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II. GP-MRF MO DEL 

A. GP model for classification 

Given a training set (X, Y) = {Xn, Yn};;=l' where N 
is the number of labeled samples and Yn is the corresponding 
class label that indicates the land-cover type. Each vector Xn E 
Rd represents the spectral d bands of a pixel in a HSI. Our 
task is labeling a new test sample set x = {Xm}�=l' where 
!vI is the number of test samples, by computing the probability 
P(yIX, Y, x) belonging to a class. For simple illustrating the 
binary classification with target Yi E {-I, + I} is considered 
here. The binary classification is easily extended to multiple 
classification by using the one-against-all or one-against-one 
strategy. 

GP models generate a discrete label Yi for a data point 
Xi via a continuous latent variable Ii [9]. A likelihood model 
p(Ylf) characterizes the monotonic relationship between latent 
variable f and the probably observed annotation y. Several 
forms of squashing functions are available for such likelihood 
model. In particular the logistic and probit function are the 
most popular. In this paper, the probit function is considered. 

(1) 

where cp is the Gaussian cumulative distribution function with 
the form: 

J
z 1 x2 

cp(z) = -exp( -- )dx (2) 
- =  v'2ir 2 

To make a probability prediction for x an integrating over the 
latent variable I is executed as follows: 

P(Yi = +lIX, Y,Xi) = J p(YiI Ii)P(fiIX, Y,xi)dIi (3) 

where p(J;IX, Y, Xi) is the distribution of latent variable Ii 
corresponding to Xi. It can be obtained by integrating over 
F = (FI, ... , Fn), which is the latent variable corresponding 
to training set (X, Y): 

p(filX, Y, Xi) = J p(filX, Y, Xi, F)p(FIX, Y)dF (4) 

where p(FIX, Y) = p(FIY)p(FIX) / p(YIX) is the poste­
rior over the latent variables. p(YIX) is the marginal like­
lihood (evidence), p(FIX) is the GP prior over the latent 
function, which in GP model is a jointly zero mean Gaussian 
distribution and with the covariance given by the kernel K. 

The non-Gaussian likelihood in Eq. (4) makes the integral 
analytically intractable. We have to resort to either analytical 
approximation of integrals or Monte Carlo methods. Two well 
known analytical approximation methods are very suitable for 
this task, namely the Laplace [10] and the Expectation Prop­
agation (EP) [1 I]. They both approximate the non-Gaussian 
joint posterior as a Gaussian one. In this paper we adopt the 
Laplace method since its computation cost relative lower than 
EP with comparable accuracy. As introduced in [9] the mean 
and variance of J; are obtained as follow: 

T -� /Li = k(xi) K F (5) 

(J2 i = k(Xi' Xi) - k(Xif (K + W- )k(xi) (6) 

where W � -VVlogp(YIF) is diagonal. K denotes a N -
by - N covariance matrix between N training points. k(xi) 

is a covariance vector between N training points X and a test 
points Xi and k(Xi' Xi) is covariance for test point Xi and 
F = argmaxF p(FIX, Y). Given the mean and variance of 
1;, we compute the prediction probability in Eq. (3). 

The covariance function is the crucial ingredient in GP 
predictor and its hyperparameters 8 crucially affect its per­
formance. The Gaussian radial basis function (RBF) is one of 
the most widely used kernels since its robustness for different 
types of data and given as follow: 

2 IIXi - Xj 112 
KRBF(Xi' Xj) = (J exp( - 2[2 ) (7) 

8 = [(J, I] is the hyperparameter set for RBF, of which I in 
the function is the characteristic lengthscale, which informally 
can be roughly considered as the distance you have to move 
in input space for the function value to become uncorrelated. 
The smaller I we choose, the more rapidly the function varies. 
In this case, all of the training points are more correctly 
classified. Moreover, if I varies with input dimensions (i.e. 
input bands), e.g. I = [h, ... , ld] , there is another kernel 
called the Automatic Relevance Determination (ARD) which 
is derived form RBF: 

(8) 
b=l...d 

xf indicates the bth band of the ith input point. The ARD 
has been proved to be an effective kernel successfully remov­
ing irrelevant information [12]. It provides a parametrization 
scheme for automatic feature reduction especially for the 
high-dimensional challenge such as HSI with more than one 
hundred bands. 

B. MRF-based Regularization 

In the aforementioned pixelwise classification, only the 
spectral information is considered. However the spectral re­
sponse can be affected by other spectrum from adjacent 
pixels. Therefore, it is necessary to regularize the pixel wise 
classification results with MAP-MRF framework [13]. 

Algorithm 1 GP-MRF 

Input: PL(XiIYi): the the likelihood function for pixel i be­
longing to a class Yi; 

1m: the label map from GPC; 
Output: optimal y* -+ new label map 

1: initial the minimal global energy Emin; 
2: compute spectral energy Especlrat; 
3: find the neighbourhoods N for each site; 
4: repeat 
5: compute spatial energy E.ljJalial based on 1m; 
6: compute local energy E(Yi) for each site; 
7: assign the new label Y; corresponding to min E(Yi) to 

the site i and update label map 1m; 
8: compute the global energy E(y) and compare with 

Emin; 
9: if E(y) .-::: Emin then 

10: Emin +- E(y) 
11: end if 
12: until Emin convergence 
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(a) (b) 

(c) (d) 

Fig. l. (a) Data of the University of Pavia, (b) ground truth, (c) classification 
result of GPC (AR D) and (d) classification result of GP- MRF (AR D). 

Markov Random Fields are a probabilistic framework that 
incorporates the spatial information from a set of cliques in 
images, whose basic principle is that each pixel interacts only 
with its neighbouring pixels [7]. In other words, a pixel more 
possibly has the same label as its neighbourhoods. Because 
of formulating MRF models within Bayesian framework, the 
optimal solution is the Maximum a Posteriori (MAP) and is 
obtained by maximizing the posterior probability Pr(ylx): 

y* = arg max Pr(ylx) 
yEY 

(9) 

where x is the observation and y is the possible labeling. 

Based on the Hammersley-Clifford theorem, we consider 
the MAP solution as the minimization of an energy cost 
function [14]: 

E = E.,peelral + Espalial (10) 

E,pectral is the spectral energy defined by the likelihood func­
tion as: 

( 11) 

where Xi is the site of the ith pixel in the label map, Yi is one 
of the possible label for site Xi, and the likelihood function 
PL(XiIYi) have been already yielded by GPC (i.e. P(Yilxi)), 
which means the predictive probability of Xi belonging to the 
class Yi. The second term of Eq. (10) is spatial energy and its 
standard expression is: 

E,patial = L ;3(1- 5(Yi,Yj)),j E N ( 12) 
JEN 

where 5 ( . , .) is the Kronecker delta function (5 (a, b) = 1 if 
a = b, else 5 (a, b) = 0) and ;3 is a non-negative parameter 
controlling the weight of spatial energy. N is the neighbour­
hood system, which in this paper is 8-connected. Yi is the label 
of the center pixel Xi and Yj is the label of its jth neighbouring 
pixel. 

We adopt the Iterative Conditional Modes (ICM) [I5] to 
solve the optimization problem. We compute the local energy 
E(Xi) of each pixel belonging to each label. A pixel is 
assigned to the label with smallest energy and it gets the local 
optimization. The local energies were summed up as global 
energy. Based on the updated label map the above procedure 
will be repeated. The optimization can be achieved until the 
global energy is convergence. The procedure is detailed in 
Algorithm 1. 

III. EXPERIMENTAL RESULTS 

In the experiments, three hyperspectral datasets-INDIAN 
PINES, UNIVERSITY OF PAVIA, and CENTER OF PAVIA 
will be used in this paper. These datasets have been widely 
used as benchmark [2]-[5] in the study of HSI classification. 
The INDIAN PINES dataset was acquired by the AVIRIS in 
1992 and taken over a predominately agricultural region in 
NW Indiana, USA. The dataset has 145 x 145 pixels and 
200 channels. Seven of the 16 different land-cover classes 
in the original ground-truth were removed, which can offer 
only a few training samples (this makes the experimental 
analysis more significant from the statistical viewpoint) [2]. 
The CENTER OF PAVIA image remains 102 channels after 
removing some noisy bands and lies around the center of Pavia 
with 1096 x 492 pixels. The ground-truth consists of 9 land­
cover classes. The UNIVERSITY OF PAVIA dataset has 103 
channels with 610 x 340 pixels and also 9 land-cover classes. 

In the experiments, both the RBF and ARD kernel 
were adopted in the GP model for comparison purpose and 
the hyperparameters were optimized by Conjugate Gradient 
method [16] based on the Laplace method. In order to simplify 
the classification and balanced samples problems, the one­
against-one strategy was applied. The algorithm [17] was 
used to estimate the predictive probability of the test samples 
belonging to each class from the results of one-against-one 
strategy. 

The original image and ground truth of the University of 
Pavia dataset are shown in Fig.1(a) and Fig.1(b) respectively. 
The classification results of GPC are shown in Fig.1 (c). Many 
scattered pixels or small patches are labeled as different 
classes from their adjacent pixels by GPc. These labels are 
unconvinced as we have discussed in Section I. Fig. 1 (d) shows 
the improved classification results by MRF based on the results 
of GPc. The label image is refined by MRF. In this experiment, 
the ARD kernel was used in GP model. We used the same size 
of training and test samples as in [18]. 

Table I shows the individual class accuracy of SVM, 
RF, GP (RBF), GP (ARD) and GP-MRF (ARD) from the 

TABLE 1. INDIVIDUAL CLASS PERCENTAGE ACCURACIES OF THE 
UNIVERSITY OF PAVIA DATASET WITH DIFFERENT CLASSIFIERS. 

Class SVM RF GPRBF GPARD GP-MRF 

CI Asphalt 85.4 84.7 88.5 91.1 99.2 
C2 Meadows 65.9 90.9 94.5 94.3 99.2 
C3 Gravel 68.8 86.9 90.0 89.2 97.7 
C4 Trees 97.0 95.1 97.4 97.4 97.0 
C5 Metal Sheets 99.4 99.6 100 100 100 
C6 Bare Soil 93.7 65.8 87.5 89.0 98.6 
C7 Bitumen 90.5 91.3 93.1 95.2 98.5 
C8 Bricks 92.5 70.9 78.9 82.4 92.1 
C9 Shadow 97.5 100 99.8 100 99.5 
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TABLE II. OA AND AA IN PERCENTAGE OF GP (RBF), GP (AR D) 
AND GP- MRF (AR D) FOR DIFFERENT DATASETS 

Algorithm 
INDIAN UNIVERSITY CENTER 

OA AA OA AA OA AA 

GP (REF) 84.50 89.39 90.58 91.46 98.33 96.53 

GP (ARO) 87.26 91.41 92.25 93.15 98.41 96.60 

GP-MRF (ARO) 95.60 97.42 98.3 97.9 97.48 99.13 

University of Pavia dataset. In order to objectively compare 
the performances between different classifiers, we used the 
same size of training and test samples as [I8] and quoted 
the experimental results of SVM (REF). The results show 
that the GPC performs competitively or even better than the 
state-of-the-art methods SVM and RF in terms of accuracy. 
The comparison between the GPC (REF) and GPC (ARD) 
proves the previous discussion in Section II: the ARD kernel 
outperforms REF kernel for classification of HSI. However, 
in order to optimize more parameters for ARD kernel, more 
input dimensions increase the training time rapidly. Finally, 
the results of GP-MRF (ARD) demonstrate that our proposed 
approach can significantly increase the classification accuracy 
of the individual class. 

Table II compares the results in terms of overall accuracy 
(OA) and average accuracy (AA) between GP (REF), GP 
(ARD) and GP-MRF (ARD) in three different datasets. The 
results further prove that, our proposed approach can effec­
tively improve the accuracies of classification for HSI over 
urban/suburban regions. 200 points for each class from these 
datasets were randomly selected as training samples and the 
residual were regarded as test samples. 

Finally, Fig. 2 investigates the performances of GP-MRF 
(ARD) in terms of global classification accuracy with different 
weight parameter f3 = [0.5,1,2,3,4,5] for spatial information 
in Eq. (12). We draw the conclusion that the OA is not 
significantly different over the given values. Our method is 
robust to the choice of f3. 

I V. CONCLUTlON 

In this paper we proposed a novel framework GP-MRF, 
which combines the GPC and MRF to enhance the classi­
fication accuracies. The GP-MRF framework integrates the 
spectral information into spatial information and effectively 
classifies the HSI over urban/suburban regions without selec­
tion or reduction of data dimensionality. 

• Indian Pines • University of Pavia • Center of Pavia 
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Fig. 2. Overall accuracy in percentage for different values of (3 for different 
datasets 

We evaluated the performance of GP-MRF in three hy­
perspectral datasets and the results demonstrated that MRFs 
utilize the relationship between the adjacent pixels to improve 
the classification accuracy of HSI on the basis of GPC classi­
fication. We used GPC to preliminarily classify original data 
and obtain label image and predictive probability of each pixel 
belonging to each class which will be applied in the step of 
MRF. The experiment shows that our approach yields accurate 
classification results and is robust for classifying different 
kinds of HSI. 
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