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Abstract. Spectral graph clustering is among the most popular algo-
rithms for unsupervised segmentation. Applications include problems
such as speech separation, segmenting motions or objects in video se-
quences and community detection in social media. It is based on the
computation of a few eigenvectors of a matrix defining the connections
between the graph nodes.
In many real world applications, not all edge weights can be defined. In
video sequences, for instance, not all 3d-points of the observed objects are
visible in all the images. Relations between graph nodes representing the
3d-points cannot be defined if these never co-occur in the same images.
It is common practice to simply assign an affinity of zero to such edges.
In this article, we present a formal proof that this procedure decreases the
separation between two clusters. An upper bound is derived on the second
smallest eigenvalue of the Laplacian matrix. Furthermore, an algorithm
to infer missing edges is proposed and results on synthetic and real image
data are presented.

1 Introduction

Grouping similar data without any knowledge about the possible labeling is an
important problem. This so-called unsupervised segmentation task is necessary
in bioinformatics, machine learning, pattern recognition and computer vision.

One known technique for unsupervised segmentation is spectral clustering.
It rests upon the segmentation of a graph capturing the relations between the
data. Minimum cuts are used to decide the segmentation of the the graph into
two [1, 2] or more sub-graphs [3].

Constructing the graph requires that affinities are computed between the
vertices representing the data. If more than two data items are necessary to esti-
mate the affinity, the corresponding hyper -edge connects all involved vertices [4].
For such hyper-graphs, the number of edges is exponential in the number of data
items necessary to compute the affinity. Since many real-world problems induce
prohibitively large hyper-edge sets, a commonly used approach is to estimate a
subset of edges only [5–8], ie. many edge weights remain undefined.

In applications such as motion segmentation from video sequences [9] 2d-
trajectories corresponding to different 3d-points have to be compared. Due to
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occlusion or tracking failure, 2d-projections of different 3d-points may never co-
occur in the same images so affinities between the corresponding graph nodes
cannot be defined.

This situation is handled by state-of-the-art algorithms [6–9] by setting the
corresponding edge weight to 0. This procedure is equivalent to assuming max-
imum dissimilarity between the two trajectories even though they may belong
to the same group.

The contribution made here is twofold: (1) We model the impact of un-
known edge weights in the context of spectral clustering. A lower bound on
the separation between the two clusters and the upper bound on the eigenvalue
gap is derived and proved. (2) We propose an algorithm to infer the weights of
unknown edges using the known edges.

Whereas the effect of noise on the affinities has been investigated before [10,
11], this is the first work that considers the impact caused by undefined edges
on spectral graph clustering.

The structure of this article is as follows: Some definitions are made in Sec-
tion 2. Some facts of spectral clustering and the NCut-algorithm are shortly
explained in the same section. Our first contribution, the derivation of upper
and lower bounds on the cluster separability and the eigenvalue gap is presented
in Sec. 3. Sections 4 and 5 present the proposed algorithm for inferring unknown
edges of the graph and an application on motion segmentation. Experimental
results using synthetic and real image data are shown in Sec. 6. The article
concludes with a discussion in Sec. 7.

2 Definitions

For matrices, we use capital letters, such as matrix W . Vectors are indicated by
lower-case letters, e.g. w. By w(i) we denote the ith entry of a vector w whereas

wi denotes the ith vector, for instance given W =
[
w1 · · · wn

]>
the vector w3

implies the third row of matrix W . The (i, j)th entry of matrix W is indicated
by wij . By ‖v‖, we mean the L2-norm of v.

Let G = (V,E) be an undirected graph consisting of |V | = n nodes V and a
set of edges E connecting the nodes. Let there be subsets V1 ⊂ V and V2 ⊂ V
such that V1 ∩ V2 = ∅ and |V1| = n1, |V2| = n2, n1 + n2 = n.

The real-valued weight wij(eij) of an edge eij between two vertices vi and vj
equals c1 if and only if both vi and vj are vertices of either V1 or V2. Otherwise,
its edge weight equals c2 < c1. We may further assume that c1, c2 ∈ [0, 1]. The
idea motivating c1 and c2 is that the clusters do not need be perfectly separated.
Noise on the edge weights can be considered by decreasing c1 and increasing c2,
respectively.

Denote by W the matrix consisting of the edges weights between all nodes.
Assuming without loss of generality that the vertices are sorted, the n1 × n1
upper left block and lower right n2 × n2 block of W are all but c1 whereas the
remaining entries of W equal c2.
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Let di =
n∑
j=1

wij and D the matrix with its (i, i)th diagonal entry equal to

di. The Laplacian L of W can be defined as

L = I −D−1W, (1)

where I denotes the identity matrix. The segmentation is given by the eigenvector
x2 to the second smallest eigenvalue of L. Assuming that the nodes are sorted
and the clusters do not overlap, it is a piece-wise constant vector [1, 3, 10]. The
labelling can be obtain by kmeans, for instance.

3 An Upper Bound on the Eigenvalue Gap

This section introduces the first contribution of this work, namely bounds on the
second smallest eigenvalue of the Laplacian if not all edge weights are defined.

Let w be a vector consisting of the entries of a particular row of W . Denote
by w′ the same vector with some yet not all of its entries set to zero. It is possible
to establish upper and lower bounds on the angle between w and w′:

Lemma 1. For the angle between w and w′ we have

0◦ < ∠ (w,w′) < 90◦ (2)

Proof. Let P(w′) denote the set of non-zero entries of w′. If a particular i is
chosen such that w′(i) 6= 0, we have w(i) · w′(i) = w(i)2, hence we have for the
scalar product between w and w′

wT · w′

‖w‖ · ‖w′‖
> 0. (3)

Regarding the upper bound on the scalar product, we have

w> · w′ =
∑

i∈P(w′)

w′(i)2 = ‖w′‖2. (4)

we can see that Eq. (3) cannot attain a value of 1 since the first factor of the
denominator is ‖w‖ and we have ‖w‖ > ‖w′‖. ut

These vectors wi induced by the vertices v ∈ Vk, with either k = 1 or k = 2,
can be regarded to span an nk-dimensional subspace

Sk = span
(
wi1 , . . . , wink

)
. (5)

Denote by the matrix Sk an orthonormal basis of Sk. For the angle between w′

and the corresponding subspace Sk we obtain that

Lemma 2. ∠ (w′,Sk) > ∠ (w,Sk).
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Proof. Noticing that ∠ (w,Sk) = 0 ⇔
∥∥∥ w>

‖w‖ · Sk
∥∥∥ = 1 we can show that∥∥∥ w>

‖w‖ · Sk
∥∥∥ > ∥∥∥ w′>

‖w′‖ · Sk
∥∥∥ as in the proof of of Lemma 1. ut

Let w′p be the vector with p of its entries being set to zero. From the above
two lemmata, we immediately obtain that

Corollary 1. The angle between w′p and Sk increases with the weight of the
“zeroed” entries of w′p,

∑
i 6∈P(w′

p)

w(i)2

∠ (w′1, Sk) < ∠ (w′2, Sk) < · · · (6)

Notice that the gap between the two clusters – measured by the difference
between the second and the third smallest eigenvalue of the Laplacian L – is
maximum if and only if S1 ⊥ S2. Increasingly perturbed vectors w′i, i = 1, . . . , nk,
thus cause increasingly perturbed subspaces S ′k spanned by the vectors w′i.

The question we are interested in is what happens to the angle between S ′1
and S ′2 compared with ∠ (S1,S2). If we are interested in exactly determining the
gap, the convex hulls of the two sets of vectors w′i need be compared.

However, analyzing the worst-case turns out to be much easier. This worst-
case is defined by the ex-radius, ie. the largest distance between the centroid bk
of the points wi ∈ Sk and the points wi.

To derive an upper bound we need to determine the distance between w and
w′p. Obviously, the Euclidean distance between w and w′p is largest if and only
if c1 entries are zeroed. Here, we further assume that p < nk, ie. not all edges to
other vertices of the same cluster are removed.

Theorem 1. The squared Euclidean distance between w and w′p is bounded by

‖w − w′p‖2 ≤ p · c21. (7)

With probability ρ1 >

(
1

1+
n2
n1

)p
if w ∈ S1, and ρ2 >

(
1

1+
n1
n2

)p
if w ∈ S2,

respectively, the distance ‖w − w′p‖2 is smaller.

Proof. Since c1 > c2, the distance ‖w − w′p‖2 is largest if and only if all zeroed
edges have weight c1. The probability to sample c1 entries of vectors w ∈ S1 is
given by

ρ′1 =
n1!

p!(n1 − p)!
· p!(n1 + n2 − p)!

(n1 + n2)!
=

n1!(n1 + n2 − p)!
(n1 − p)!(n1 + n2)!

(8)

=
n1!

(n1 − p)! ·
p∏
i=1

(n1 + n2 − p+ i)

=

p∏
i=1

n1 − p+ i

n1 + n2 − p+ i
. (9)

Defining di = n1 − p+ i we obtain

ρ′1 =

p∏
i=1

di
di + n2

=

p∏
i=1

di
di(1 + n2

di
)

=

p∏
i=1

1

1 + n2

di

=

p∏
i=1

1

1 + n2

n1−p+i
. (10)
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Using an upper bound of each factor we finally arrive at the claim:

ρ′1 =

p∏
i=1

1

1 + n2

n1−p+i
(11)

<

p∏
i=1

1

1 + n2

n1−p+p
(12)

=

p∏
i=1

1

1 + n2

n1

=

(
1

1 + n2

n1

)p
. (13)

The derivation of the probability to only sample c1 entries of vectors w ∈ S2 is
equivalent. ut

In other words, theorem 1 implies that the probability that the distance
‖w − w′p‖2 is smaller than p · c21 reduces exponentially as the number of zeroed
entries p in w′p grows. In the following, we call this distance the separation
between S1 and S2.

Let the centroids b1 =
[
c1 · · · c1 c2 · · · c2

]
, b2 =

[
c2 · · · c2 c1 · · · c1

]
, and a

vector v parallel to b1− b2 with ‖v‖ = 1. Assuming that p entries of each vector
w′p ∈ {S1,S2} are zeroed where p < {n1, n2}, we arrive at

Theorem 2. The separation between the two perturbed clusters equals s = s1 +
s2 where

sk ≥
∥∥(b>k v) v∥∥2 − p · c21, (14)

and the angle equals α = α1 + α2 where

αk ≥ tan−1
√
sk
‖l‖

(15)

with l = b1 −
(
b>1 v

)
v = b2 −

(
b>2 v

)
v.

Proof. The vector v indicates the line between the two cluster centroids bk. If the
orthogonal projection of the vector bk onto v is subtracted from bk, we obtain
the vector l from the origin to the perpendicular point on the line between b1
and b2.

The length of the line segment between one of the two centroids and the
perpendicular point is given by the length of the orthogonal projection of the

vector bk onto v, ie.
∥∥(b>k v) v∥∥2. Subtracting the radius of the sphere around bk

by lemma 1 yields the expression in Eq. (14).
Since the perpendicular line and the line between the perpendicular point

and the sphere around each bk from a right triangle, we can compute the the
angle between the perpendicular l and the vector between origin and the closest
point on the sphere around bk by Eq. (15). ut

The probability that the separation s is in fact larger than the minimum stated
in theorem 2 is 1− ρ1ρ2, ie. usually very large.
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Let v′1 and v′2 be the vectors from the origin to the intersection of the line
between b1 and b2 with the sphere around each cluster center. Let the first two
rows of the n× n matrix T ′ be the vectors v′1 and v′2, and the other rows being
zero.

Let further v1 and v2 be the two 2d-vectors resulting from rotating
[√

2
√

2
]

by α
2 and −α2 , respectively. Assume further that v1 and v2 are normalized such

that
∑
i

v1(i) =
∑
i

v2(i) = 1. Let the 2× 2 matrix T consist of v1 and v2 as first

and second row.
Using theorem 2 we are now able to derive a bound on the second largest

eigenvalue of the Laplacian. The following theorem constitutes the first of our
two main contributions.

Theorem 3. The second smallest eigenvalue λ2 of the Laplacian matrix L is
bounded by

λ2 ≤ 1− λmin (16)

where λmin is the smaller of the two solutions 0 ≤ λmin ≤ 1 of the quadratic
equation

(t11 − λmin)(t22 − λmin)− t12t21 = 0 (17)

where the scalars tij are the entries of the matrix T .

Proof. We can see that the two eigenvalues of T and T ′ are identical: Obviously
both share the eigenvalue 1. The second eigenvalue is also identical since α =
∠ (v′1, v

′
2) = ∠ (v1, v2), and the principal angle θ and the singular value and

eigenvalue are related by

0 ≤ cos θ = σ
(
v>1 v2

)
= λ

(∣∣v>1 v2∣∣) ≤ 1 (18)

where σ(·) denotes the singular value of the argument and λ(·) the eigenvalue.
Lastly, as the eigenvalues of the Laplacian L are related to those of D−1W

by Λ (L) = 1− Λ
(
D−1W

)
, we obtain the claim in Eq. (16).

ut

4 Graph Completion

Let the edge ẽi,j between vertices vi and vj be unknown. Denote by Tu =(
ei,L1

, eL1,L2
, · · · , eLnl

,j

)
the uth path between vi and vj of length nl > 1.

Proposition 1. The unknown weight w̃i,j of an edge ei,j between vertices vi
and vj can be inferred by

w̃i,j = max
u
{min {w(e), e ∈ Tu}} . (19)

This is motivated by the following idea: Let vi and vj both be vertices of the
same cluster Sk. Then, there exists at least a single path T (i, j) such that all
edges along this path have large weight. Assume, conversely, that vi ∈ Sk1 and
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vj ∈ Sk2 , k1 6= k2. Then, all paths T (i, j) contain at least a single edge with low
weight.

As the probability that a path contains an edge with low weight increases
with the path length, it suffices to search the q shortest paths Tu, u = 1, . . . , q,
between vi and vj .

5 Application and Algorithm

In this section we present an algorithm for motion segmentation. Suppose that
several sets of 3d-points move independently and are projected into images by a
camera possibly also rotating and translating. Due to occlusion within the scene
or failure of the feature point tracker, not every 2d-projection of a 3d-point is
visible in all the images.

The problem is then to assign each trajectory – temporally consecutive 2d-
projections of a particular 3d-point – a label indicating which group of 3d-points
it belongs to. Associating one graph node with each trajectory, it requires to
define affinities between each two vertices. If two trajectories do not overlap
sufficiently such an affinity cannot be defined.

In the following we explain the procedure how to estimate affinities between
nodes. It strongly rests upon the guided-sampling algorithm proposed in [12] yet
only uses random sampling in a strict sense.

Low-dimensional subspaces are fitted to a subset of vertices representing
the trajectories. Since subspace fitting is susceptible to missing data, a random
vertex is selected first. We then discard vertices that are not visible at exactly
those images the first vertex is visible at. From this subset, F − 1 vertices are
randomly chosen and the model parameters are computed by SVD. Here, we
define F > D.

Given this model, the error is computed for all vertices which are visible in
at least 8 of the images the subspace model is valid for. As error measure we use
the Euclidean distance between each visible trajectory and the subspace. The
resulting error is appended to a residual matrix. If a 3d-point is not visible in at
least 8 of the images used for estimating the subspace, the corresponding entry
in the residual matrix is set to undefined.

These steps are repeated R times. The error matrix is then sorted similarly
as in [12]. The difference to [12] is that undefined entries are discarded at the
sorting. If error vectors corresponding to two vertices vi and vj share the same b
models among those H with lowest error, the weight of the edge between vertices
vi and vj is set to eij = b/H. The scalar parameter H controls the connectivity
of graph.

Finally, weights of edges which could not be defined are inferred by using the
algorithm proposed in Sec. 4. The resulting complete graph is segmented using
NCut spectral clustering.
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6 Experiments

6.1 Synthetic Data
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Fig. 1. Dash-dotted red line: spectral clustering (undefined edge weights are set to
zero). Solid blue line: proposed graph completion followed by NCut. Left plot: the
number of incorrectly classified graph vertices. Right plot: minimum absolute sum be-
tween any two of the entries |x2(i)| and |x2(j)| of x2. i and j indicate vertices of different
clusters. Larger values of the minimum absolute sum indicate better separability of the
two clusters.
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Fig. 2. Left plot: The solid blue line indicates the predicted upper bound on the eigen-
value corresponding to the second smallest eigenvalue of the Laplacian while the dash-
dotted red line indicates the true value. The noise was fixed to 2% and c1 = 0.8,
c2 = 0.2. Middle plot: The solid red line shows the measured second eigenvalue for
c1 = 0.6 and c2 = 0.4. Right plot: The solid line shows the angle between the corre-
sponding eigenvector and the ground truth.

The algorithm proposed in Sec. 5 was evaluated using an artificial graph
consisting of n1 = 50 and n2 = 50 nodes. While the data is ordered, neither
the algorithm proposed in Sec. 5 nor the spectral clustering have any knowledge
about the labeling.
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Fig. 3. The weight matrix W shown in the left image was created by taking c1 = 0.6,
c2 = 0.4, setting the noise level to a standard deviation 3% and randomly removing
60% of all edges. The right image shows the recovered graph by the proposed algorithm.
The recovered eigenvector to the second smallest eigenvalue of the Laplacian L differed
from the ground truth by approximately 2.76◦ whereas that vector corresponding to
the right image differed by about 36.87◦.

The effect which undefined but “zeroed” edge weights have on the spectral
clustering can be seen by the dash-dotted red curve in the left plot of Fig. 1.
Here, for fixed, normally distributed noise applied to the non-zero entries of W ,
fixed separation c1 − c2 and gradually increasing percentage of zeroed weights,
the misclassification (measured by the number of misclassified vertices) increases
(shown is the average of ten trials with different noise).

For this experiment, noise and separation were fixed to σ = 2% and c1 = 0.7,
c2 = 0.3, respectively. The dash-dotted red lines indicate the results using a
traditional spectral clustering, ie. the entries of the weight matrix W are simply
set to zero. The solid blue lines indicate the results after the proposed graph
completion followed by the spectral clustering.

The right plot in Fig. 1 shows the minimum

min |x2(i)| − |x2(j)| , ∀ i, j (20)

of the eigenvector x2 to the second smallest eigenvalue of L between any two of
its entries |x2(i)| and |x2(j)| where i and j indicate vertices of different clusters.
Larger values indicate better separability of the two clusters.

As can be seen, the amount of undefined edge weights decreases the separa-
tion between the two clusters for standard spectral clustering (dash-dotted red
line). The proposed graph completion is not affected that strongly.

The left plot of Fig. 2 shows the average (of ten trials) of the predicted upper
bound on the eigenvalue (solid blue line) corresponding to the second smallest
eigenvalue of the Laplacian while the dash-dotted red line indicates the true
value. The noise was fixed to 2% and c1 = 0.8, c2 = 0.2. It can be seen that
for increasing noise both the theoretical upper bound and the measured values
decrease. The middle plot in the same figure shows the average of the measured
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second eigenvalue for c1 = 0.6 and c2 = 0.4. Apparently, the eigenvalue decreases
more strongly. The right plot shows the angle between the corresponding eigen-
vector and the ground truth. Thios pertubation causes the misclassification.

The left image of Fig. 3 shows an example of a weight matrix W if 60% of
all edges are randomly removed. The right image in the same image shows the
graph recovered by the proposed algorithm.

The three plots in Fig. 4 show averages of the Frobenius norm between the
ground truth weight matrix and the recovered one of ten trials with different,
normally distributed noise each time. In the left plot, the standard deviation
was increased from 0 to 0.03 in steps of 0.005. The solid blue line indicates 10%
randomly removed edges, the dash-dotted red line 30%, and the dashed green
one 60%.

In the middle plot, the percentage of missing edges was increased. Here, the
solid blue line was obtained by setting c1 = 1 and c2 = 0, the dash-dotted red
line c1 = 0.8 and c2 = 0.2; the dashed green line c1 = 0.6 and c2 = 0.4. The
noise was kept fixed to 1%. It can be seen that the amount of missing edges is
more important than the difference between c1 and c2.

The right figure corresponds to an experiment where the difference between
c1 and c2 was decreased. The solid blue line indicates 10% randomly removed
edges, the dash-dotted red line 30%, and the dashed green one 60%. The noise
was kept fixed to 1%. Since all of the three lines are relatively constant while
c1 − c2 varies we can conclude that the determining factor is the amount of
undefined edge weights.
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Fig. 4. Each of the three plots was obtained by varying a particular parameter: for the
left plot, the noise was increased; edges were randomly removed for the middle one;
the difference between c1 and c2 was decreased for the right plot. As error measure we
used the Frobenius norm between the recovered weight matrix and the ground truth
(root of sum of squared errors, RSSE). For the definitions of the different lines of each
plot please see the explanation in Sec. 6.1.

6.2 Real Image Experiments

Two real image sequences, cars9 and farm01, were selected from the extended
Berkeley motion database3. These sequences were selected because they are

3 http://lmb.informatik.uni-freiburg.de/resources/datasets
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longer (60 and 252 images, respectively) so not all trajectories co-occur at a
given number of frame. That also is the reason why the sequences from the pop-
ular Hopkins benchmark were not considered here as they simply do not contain
sufficiently many missing correspondences.

The software from [6]4 was used for tracking feature points. Tracks shorter
than 8 images were discarded as the subspace distance measure is not reliable
then.

For the cars9 sequence 80% of the theoretically possible edges can be defined.
The remaining ones correspond to trajectories that do not co-occur at sufficiently
many images. For the farm01 sequence, 40% of the trajectories do not overlap
sufficiently.

Figures 5 and 6 show segmentation results on the farm01 and the cars9
sequence for a state-of-the-art algorithm for motion segmentation (left column)
[6], the proposed algorithm for motion segmentation without graph completion
before the spectral clustering (middle column), and the proposed algorithm with
graph completion followed by spectral clustering (right column).

Differently than the algorithm of [6], the proposed algorithm does not merge
multiple oversegmentations.

As can be seen, the proposed graph completion greatly improves segmenta-
tion results. The wheels of the tractor in the farm01 sequence are somewhat
mis-segmented as they define a separate rigid motion in terms of the rigid sub-
space measure as affinity.

7 Discussion

This article investigated the effect of undefined edge weights on spectral graph
clustering. Upper bounds on the squared distance between two clusters were de-
rived. It was possible to establish a lower bound on the second smallest eigenvalue
of the Laplacian.

A practical algorithm was proposed to infer undefined edge weights. Its per-
formance was evaluated using synthetic data. Using challenging sequences from a
standard benchmark, it was shown that the proposed method outperforms both
a state-of-the-art algorithm for motion segmentation and a spectral clustering
without the graph completion.

Up to the best knowledge of the authors, this is the first work which considers
the effect of undefined edges on the performance of spectral clustering.
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Fig. 5. cars9 sequence from the extended Berkeley motion database. Images in the
left column indicate segmentation results by the algorithm of [6]; middle column: spec-
tral clustering followed by spectral clustering without graph completion before; right
column: proposed (graph completion followed by spectral clustering)
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Fig. 6. farm01 sequence from the extended Berkeley motion database. Images in the
left column indicate segmentation results by the algorithm of [6]; middle column: spec-
tral clustering followed by spectral clustering without graph completion before; right
column: proposed (graph completion followed by spectral clustering)


