Fast Approximate Nearest-Neighbor Field by
Cascaded Spherical Hashing

Iban Torres-Xirau, Jordi Salvador, and Eduardo Pérez-Pellitero

Technicolor R&I Hannover

Abstract. We present an efficient and fast algorithm for computing
approximate nearest neighbor fields between two images. Our method
builds on the concept of Coherency-Sensitive Hashing (CSH), but uses a
recent hashing scheme, Spherical Hashing (SpH), which is known to be
better adapted to the nearest-neighbor problem for natural images. Cas-
caded Spherical Hashing concatenates different configurations of SpH to
build larger Hash Tables with less elements in each bin to achieve higher
selectivity. Our method is able to amply outperform existing techniques
like PatchMatch and CSH. The parallelizable scheme has been straight-
forwardly implemented in OpenCL, and the experimental results show
that our algorithm is faster and more accurate than existing methods.

1 Introduction

Computing Approximate Nearest Neighbor Field (ANNF) between image patches
has become a main building block for many computer vision and image pro-
cessing algorithms, such as image re-targeting tools, image denoising or texture
synthesis among others. Given two images A and B, the goal is to find for every
patch in A a similar patch in B. The large size of images translates into millions
of patches for each image A and B, and computing ANNF quickly becomes a
challenge.

We propose the introduction of a recent hashing scheme, namely Spherical
Hashing [1], in order to reduce the spatial and temporal complexity: we only
require one set of hashing functions against the several sets of functions typically
required when using planar function-based hashing (CSH [2]). In comparison to
CSH and randomized search schemes like PatchMatch [3], we reduce the number
of required iterations to just one to reach superior results.

To achieve this performance, we first introduce the general Spherical Hashing
framework, and detail its applicability in ANNF estimation (Section 3). After
observing its limitations, in Section 4 we propose a novel cascaded configuration
for enhanced search without increasing testing time. Furthermore, we shed light
on the implementation details of propagation strategies exploiting both local
spatial coherence and similar appearance in both linear and hash space (using
spherical Hamming distance).

We finally compare our proposed method to existing approaches in Section
5 and show the improvements achieved by our proposed contributions.

2 Torres-Xirau et al.

2 Related Work

Efros and Leung [4] proposed a simple non-parametric texture synthesis method
based on sampling patches from a texture example and pasting them in the
synthesized image. Various improvements for better structure preservation have
been carried out by [5, 6] and outperformed by [7] obtaining globally consistent
completions of large missing regions by formulating the problem as a global
optimization.

Ashikhmin [8] introduced for the first time the concept of coherency and spa-
tial propagation, which lead to speed up many previous non-parametric texture
synthesis works by limiting the search space for a patch to the neighboring area
of the match in the source texture. An extension of this work was carried out by
Tong et al. [9], where the propagation algorithm is combined with a precomputed
set of k nearest neighbors and used to quickly search for ANN.

The principle proposed in Locality-Sensitive Hashing [10] is that given a set
of points in a metric space, with high probability the hashing function families
will distribute points that are close to each other to the same bin. The scheme
proposed by Datar et al. [11] uses a particular family of LSH functions to deter-
mine regions in the space: hq (v) = ‘“’jb where 7 is a predefined integer, b is
a value drawn uniformly at random from [0, 7], and a is a d-dimensional vector
with entries chosen independently at random from a Gaussian distribution.

The idiosyncrasy of PatchMatch (PM) [3] relies on the dependency among
queries. It observes the spatial coherence of images and propagates good matches
to their neighbors (coherence-based propagation). That is, for a pair of similar
patches in two images, their neighbors are also likely to be similar. PM has a first
stage of initialization to seed the nearest neighbor field, and an iterative process
to improve the search by propagating good matches. Since initialization can be
done by assigning random values, and because PatchMatch does not organize the
data beforehand, after seeding most candidates are unlikely to be good matches.

Coherence Sensitive Hashing (CSH) [2] at its turn relies on LSH and on PM,
and it is a state-of-the-art method for ANN search that exploits the idea of
randomly partitioning the data space proposed by LSH, generating a family of
hash functions to index the patches and store them in bins in a hash table. But
alternatively to LSH, CSH uses a different set of functions (Walsh Hadamard
kernels) to achieve the dispersion to be as large as possible when projecting the
patches into the kernels, and also because of its low computational cost. CSH
outperforms LSH by generating a larger number of (nearest neighbor) candidates
since, according to PM, it also exploits coherence in images and furthermore
combines it with appearance-based candidates.

Another method for ANNF is Propagation-Assisted KD-Trees (PAKT) [12],
which improves PM and CSH in terms of accuracy and performance, and there-
fore becomes a current state-of-the-art algorithm. It merges contributions from
kd-trees [13] and PM, so it is also based on (deterministically) partitioning the
space, but its key insight is to exploit both the distribution of the candidates of
patches in the source image as the dependency of the query patches. Tree-based
methods such as kd-trees organize the candidates adaptively to their distribution

Fast Approximate Nearest-Neighbor Field by Cascaded Spherical Hashing 3

in the search space, and a query can find its ANN by checking a small number
of candidates. Indeed, PAKT introduces a propagation step after organizing the
candidates in a traditional kd-tree, in which the tree nodes checked by each
query are propagated from the nearby queries to its own leaf and to a nearby
extra leaf. In contrast with general search schemes based on kd-trees, PAKT has
no backtracking when descending the tree to a leaf, but it only checks a small
number of candidates hence it becomes a fast method for computing ANNF. The
principle of PAKT is similar to the one assumed at hashing: one bin has such a
high likelihood to contain the NN patch that there is no need to check in other
bins, but we must note that spherical hashing provides better partitioning than
the tree scheme based on hyperplanes.

The Spherical Hashing (SpH) algorithm introduced by Heo et al. [1], uses a
family of spherical hashing functions because it considers that the partitioning of
the data space by means of hyperplanes can be improved by using hyperspheres:
a higher number of closed regions can be constructed by using multiple hyper-
spheres, while the distances between points located in each region are bounded.
The SpH algorithm has an initialization step to conveniently choose the spher-
ical hashing functions in order to balance the amount of data falling in each
bin. When trained with a large data set, the content in bins is likely to be uni-
formly distributed in the hash table. Although SpH does not focus on ANNF (it
does so on data mining), its idea is still extrapolable for our purpose, and the
improvement at partitioning the data space is a key insight for our method.

Our method builds on previous approaches like CSH and SpH, therefore it
is able to quickly find similar patches with more accuracy and reducing the
computational time over CSH, since the spherical hashing algorithm guarantees
an increment of closed regions with less functions. The propagation step of our
method is similar to the one adopted in CSH, which, based on PM, exploits
query dependence. Our method additionally makes use of the Spherical Hamming
Distance introduced by [1] and proposes a new class of candidates (spherical-
neighbor propagation) to enlarge the list.

3 Spherical hashing for ANNF

In this section we present the general idea behind our coherence-sensitive ANNF
search method based on a spherical hashing scheme. We first discuss the training
stage for an optimal choice of the hashing functions for image patches.

3.1 Training

At the training stage we use a large set of data patches from a wide range of
images to create a family of data-dependent hashing functions that guarantees a
good partitioning of the space, aiming to similar amount of data falling in each
region (balance). Given a sufficiently large training set, the functions selection
will remain valid for any new given data we may process.

4 Torres-Xirau et al.

We treat each patch as a D-dimensional vector in Euclidean space. These m
vectors X = {x1, 3.7, }, z; € RP form an input manifold M of dimension D.
Compared to previous hashing approaches, which used hyperplanes as splitting
functions, spherical hashing considers the inclusion in hyperspheres. The algo-
rithm models those hyperspheres by a pivot pr€ R” and a distance threshold
(i.e. radius) tx€ R*. Each data point x; is then encoded with a binary number
b = {—1,+1}¢ being ¢ the number of hyperspheres and the length of the code,
where the k-th bit is computed as follows:

b () = {‘1’ i) > b (1)

1, d(pg,x) € tk ’

where d(-,-) denotes the Euclidean distance between two points in R”. The
main benefit of using hyperspheres instead of hyperplanes is that defining closed
regions in the spherical case is much more accurate, since these regions are
bounded, and elements belonging to a region must be strictly closer; moreover,
the number of spheres needed to define a closed region is minor than the number
of hyperplanes, therefore the number of functions is also lower and the compu-
tational time decreases significantly.

Following the scheme proposed by SpH [1], the algorithm aims to minimize
the search time in the bins of the hash table and improve the accuracy of the
search, which can be achieved by reaching independence between hashing func-
tions and a balanced partitioning of the data space. The two conditions to satisfy
are the following:

To fulfill these conditions, an iterative step for the selection of the functions
has to be carried out, so that the centers of the hyperspheres p; and their radii
tr. (thresholds) are refined at every iteration. In order to accomplish Eq. 2 and
Eq. 3, the algorithm uses two variables to help these computations:

0; =| {sk | hi(sx) =1, 1 <k <m} |

0ij =| {sk | hi(sg) =1, sp | hj(sk) =1, 1 <k <m} |

0; denotes the number of data points which have 1 bit set for the i-th hashing
function (number of data points falling inside the i-th hypersphere) and is used
to satisfy balanced partitioning for each bit following Equation (2), while o; ;
counts the number of patches that are contained within both of two (i-th and
j-th) spheres and is used to guarantee the independence between the i-th and
j-th hashing functions following Equation (3).

Fast Approximate Nearest-Neighbor Field by Cascaded Spherical Hashing 5

The iterative process for pivots refinement first adjusts the pivot centers of
two hyperspheres in a way that o; ; becomes close to 7 , and then a threshold ¢; is
chosen such that o; becomes % to meet balanced partitioning. At each iteration
the centers of the pivots are moved to new locations according to the forces
computed regarding to each o, ;. For each pair of spheres ¢ and j, a repulsive or
attractive force from p; to p; , fi«; is computed as the following:

1 055 — m/4
2 m/4

and the accumulated force f; is the average of all the computed forces from all
the other pivots:

fiej = (Pi —Pj) ,

1
fi = c_ 1Zfiej .
J#i
Convergence of the system is achieved when the ideal values for mean and the
standard deviation of o; ; are T and zero respectively (within 100e,,% and

1
100€e5% error tolerances).

3.2 Indexing and building the hash table

A hash code of length ¢ is computed for each patch of a new source image using
Eq. (1) and is stored in a bin with all its similar patches, as shown in Figure
1. At the indexing stage, a total of ¢ patch-to-pivot squared Lo distances are
computed, which translates into a computational cost of O(Dc) operations per
patch. We build a hash table (HT) of 2¢ entries of different sizes to store the
entire image.

The building process is divided into two runs: we first compute all patch
indices and determine the size of each bin in the hash table, and then we create
the table according to the dimensions of each bin and we orderly store each
patch in its position in the HT. However, we reduce the equivalent building time
and search time compared to similar structures as PAKT [12], since the kd-tree
scheme requires the decomposition in a suitable basis, while the hashing algo-
rithm allows more flexible partitions in a native way. Furthermore, our algorithm
is highly and easily parallelizable so the final build time is reduced to practically
O(Dc) in e.g. an OpenCL implementation.

3.3 Direct search

For every patch in a given query image we compute its index, so that a list
of similar candidates with the property of space similarity due to belonging
to the same region can be found in the hashed bin. Since bins often contain
several patches, various techniques can be carried out to select the ANNF, e.g. a
re-ranking algorithm based on similarity between images (L3), which increases
the computational time in exchange for higher accuracy, or a random sampling
within the HT entry that provides a fast approximate match.

6 Torres-Xirau et al.

Fig. 1. Spherical hashing for ANNF places data points in a R” space (D = 2 in the
figure) and a set of c spheres (to be computed at the training phase) determine which
region each point belongs to. The hash table on the right side stores in a bin every point
falling in its correspondent region. The search stage hashes query points through the
same system of spheres as the indexing phase. Patches of the query image point to bins
of the hash table where the source data is stored creating a list of match candidates.

Even though the system is designed to achieve balance in the HT, when
increasing the number of spheres up to a certain limit, this property becomes
unstable, so a closed region in the R? space is likely to contain no data points.
This is the main reason why we cannot build a highly discriminative set of
spheres and the motivation of our proposal in Section 4.

3.4 Drawbacks

For large values of ¢, a small number of patches in each bin is expected, and hence
the re-ranking algorithm in the search is less expensive. However, this assumption
is not always valid. Given the dimensionality of the R” space determined for the
size of the patches, a certain threshold value for c exists, at which convergence
to guarantee the properties of Eq. (2) and Eq. (3) is not achievable when we
create the hash functions. Beyond this level, several bins result to be empty after
building the HT and some others are overpopulated. We propose an extension of
the given scheme to scalably increase the number of filled bins making them less
populated and increase accuracy without introducing any cost during testing.

4 Cascaded Spherical Hashing for ANNF

We propose a novel approach to exploit the space partitioning with special in-
fluence in the densest areas. Despite the fact that spherical hashing guarantees
a good equability in the HT, given the dimensionality D of the R” space it
turns into a nearly impossible task to unlimitedly increase the number of hyper-
spheres and still ensure balancing. Concatenating multiple dependent systems
of hyperspheres and building a novel multi-dimensional hash table based on this
cascading concept results to be a more accurate method, since, although it does
not guarantee perfect balance in the final HT, we reduce the overfilling and
simultaneously enlarge the number of filled bins, which translates into better

Fast Approximate Nearest-Neighbor Field by Cascaded Spherical Hashing 7

performance in terms of accuracy at no additional processing cost during the
testing time.

Points falling in a certain region in one system are then distributed according
to the region they belong to in the next dimension and so on, hence our method
provides more similarity between patches belonging to the intersection of closed
regions between cascaded systems of spheres.

A total of 2¢ bins are created for a chosen number of spheres ¢ in the original
SpH. For a large set of m random data distributed in the space, each bin is
likely to store gz patches, but when trained with real data, we observe that
the distribution of the source patches in the space is not uniform and therefore
some bins happen to end up empty while others are overpopulated, especially for
large c. Our approach concatenates various hashing systems of different numbers
of spheres ¢y, cs,...,cy, and builds a final hash table of 2°t - 2¢2 . . . 2°V bins,

achieving high discrimination at indexing.

4.1 Cascade training

The offline training is an iterative algorithm where each iteration consists of two
phases carried out to concatenate N dependent hash systems, in order to make
every system more discriminative to the regions presenting more data (Figure
2).

4.1.1 Spheres training In this phase a data set is trained following the
scheme detailed in Section 3.1 to obtain a system of ¢; hyperspheres.

4.1.2 Data set refinement The HT deduced from the previous system(s)
is filled by the whole data set, and observing the density of data falling in each
entry we determine whether a region is overpopulated. We generate a subset of
all vectors/patches lying in overpopulated bins and train a specialized sphere
system as in Section 4.1.1.

4.2 Indexing and building the Hash Table

Actually, the way we create the resulting hash table can be seen as a multi-
dimensional Spherical Hashing, where every dimension (or spheres set) con-
tributes to higher accuracy. For a given source patch, its index is created by
a combination of the N hash codes generated using the function of Eq. 1 for
each system. The source data is stored in the resulting HT which owns a large
number of bins and, since the different spherical hashing systems are built in
cascade, no bin contains a large amount of data and it yields a higher number
of filled ones.

Building the cascaded-HT requires the same computational cost than the
building time of the method proposed in Section 3 when we compare both ap-
proaches with the same total amount of hyperspheres. Besides, this interpreta-
tion comes handy to introduce the spherical propagation introduced in Section
4.4.2.

8 Torres-Xirau et al.

Spheres set 1

Spheres set 2

o 0

Fig. 2. Cascaded training: the data set is trained to obtain the first set of spheres
(top) using the hashing scheme of Section 3.1 until convergence is achieved. When the
Hash Table is filled by the data set, our training stage observes the density of data
in space regions, and uses the subset of data contained in the most populated regions
(highlighted data points) to train the next system of spheres (bottom). This is similar
to the procedure in other cascaded methods, such as AdaBoost [14].

4.3 Direct search

For a given query image every patch is hashed to an entry of the cascaded-HT
in order to find a list of patches of the source image simultaneously belonging
to the same regions in the N sets of spheres. It is interesting to note that, if
c1 < g < ... < ¢y, the sets of hashing systems ensure more stability for the
firsts systems, so that if a query patch is hashed to an intersection of regions
where no source data is stored, the algorithm can fall back to the other (lower)
dimensions to find plausible matches (Figure 3). All patches belonging to the
hashed bin are likely to be a good match and, again for the ANNF search,
a re-ranking or an in-bin random sampling are the main alternatives to adopt.
However, since we manage to have more non-empty bins and containing less data
at the same time, the re-ranking technique results to be faster and the random
search is more accurate compared to the original method. In our experiments
we avoid re-ranking thanks to the accurate partition obtained with the cascaded
setup (we just perform random sampling within the selected bin).

4.4 Propagation

We improve the search by exploiting both local spatial coherence and hashing
appearance in both linear and hash space.

4.4.1 Spatial Propagation To enlarge the candidates list provided by the
Hashing scheme and following the idea proposed by PM, we also adopt the
concept of image coherence to propagate good matches to their spatial neighbors.
We do so in a similar way to the extended mechanism introduced by PAKT [12],
a bin-propagation to find better matches. Suppose a query patch pa(z — 1,y)
has found a similar patch pp(z’ — 1,y') , we improve the result of pa(z,y)
trying patches belonging to the same bin as pg(2’,y’) , and so on with the other

Fast Approximate Nearest-Neighbor Field by Cascaded Spherical Hashing 9

Fig. 3. Cascaded Hash Table search: Patches are hashed to bins in the corresponding
HT for each set of spheres (N = 2), and by combining them we obtain a cascaded-
HT capable of distributing data with high discrimination based on the closed region
defined by the intersection of the systems where data falls. When the cascaded-HT of
the figure is filled with real data from an image, not all bins happen to store data,
but significantly more than in a single HT (and also less populated). Indeed, we still
observe empty bins due to physical impossibility of belonging to regions which never
intersect, although with the procedure we follow to create the HT it does not represent
a cost in memory nor time. When a query patch is hashed to a bin that contains no
source data (red point), the naive process of our method relies in the lower dimensions
(or hyperspheres systems) by a linear search until a filled bin is found to find matches.

directions (Figure 4). By proceeding this way, we obtain x4 times candidates for
every query patch.

(1Y) pAxY)

|
b
/

]
]
]
£
<

pdx-1.y)

!Ul
]
[
AN

image A \ / image B

Fig. 4. Bin-Propagation in Spherical Hashing Scheme: If the spatial neighbor of
pa(z,y) (black patch), pa(z — 1,y) (red), has a good match pg(z’ — 1,9) (red), the
spatial neighbor of the match, pg(z’,y’) (black) belongs to a bin in the Hash Table
where all the patches are plausible candidates (shaded).

We analyze the benefits of the propagation step, adopted from the spatial
coherence concept proposed by PM, to find out the impact of the accuracy
gain over the cost in time. In the same scenario we reconstruct 2500 indepen-
dent images using the single and the cascaded algorithm both with and without
propagation, and the results are shown in Figure 5. Note that propagation has

10 Torres-Xirau et al.

notable influence but also implies a computational cost penalty avoided by the
proposed cascaded approach.

0.02

T T
—— Cascaded SpH - no propagation
Cascaded SpH - propagation

L ‘ —+— Single SpH - propagation
0.018 " "
‘ Single SpH - no propagation

0.016 ¥ :

0.014

L2 distance

0.012

Fig. 5. Error/Time tradeoffs of Cascaded and Single Spherical Hashing, both with and
without propagation.

4.4.2 Spherical Propagation We make use of the concept of Spherical Ham-
ming Distance (SHD) introduced by [1], which computes the distance between
codes of two bounded regions (in one dimension of our multi-SpH) as follows:

_Lbi@b;|

dsna(bi, bj) = oAb |
i /\ O

(4)
where b;, b; are the hash codes of patches i, j, and | b; & b; | measures the
number of different bits (belonging to different spheres) and the term | b; A b; |
denotes the number of common +1 bit (belonging to same spheres). This dis-
tance is useful when a given query patch hashes to a bin where no source data
is stored. When searching in a bin that happens to be empty, a straightfor-
ward implementation could initially rely on looking into the following bins un-
til one contains data (Figure 3). Since this situation does not happen often
(~ 0,005% of patches in our experiments), empirical results show that this is
often a good assumption. Nevertheless, an improvement in accuracy/speed-up
versus the naive approach is achieved by using the Spherical Hamming distance
to look in spherical-neighboring cells at minimum distance, as Figure 6 shows.

5 Results

All algorithms were run on a PC with an Intel Xeon CPU 2.67GHz CPU and
12GB RAM. Note that all the methods use the same CPU platform, even for
the parallelized OpenCL code. We test the search algorithms on a subset of the

Fast Approximate Nearest-Neighbor Field by Cascaded Spherical Hashing 11

OO0
O
g
(=]

naive alternative) "

: % minimum Spherical
1101 # Hamming Distance
1110

OO 111«

Fig. 6. Spherical Hamming Distance in the Hash Table: a patch hashed to an empty bin
is likely to have better matches using the SHD to compute the spherical-neighboring
cell instead of looking into the consecutive bins until a filled one is found.

public data set VidPairs [15] and the training of our method is carried out using
the publicly available Kodak data set.

5.1 Validation

In order to validate the proposed approach, we test different hypersphere con-
figurations. Figure 7 shows that the best performance is achieved when using
our proposed cascaded approach. We also train and test independent systems of
hyperspheres and combin them, obtaining worse performance results than with
single SpH. This proves that there is no benefit in training independent system
without focusing on the overpopulated bins.

Finally, we validate that our Cascaded SpH method is more accurate than
the single SpH at no additional testing computational cost, obtaining results up
to 0.7 dB higher in PSNR.

Note how the progressive improvements by adding more cascading levels
outperform the other alternavies, e.g. our method with 21 bits and 3 cascades
outperforms both alternatives with 25 bits. The small margins reflect the already
excellent performance of spherical hashing in the basic configuration with a
relatively high number of bits, but the interesting aspect is that the gain of the
cascaded configuration comes at literally no computational cost.

5.2 Comparison to state-of-the-art

We compare our algorithm with PM [3] and CSH [2]. Our algorithm is imple-
mented in OpenCL and exploits its parallel-friendly nature, yielding important
speed-ups. We obtained the CSH code from the authors website [15], which is
mainly implemented in C++-. The PM algorithm is an OpenCL self-implemented
code, which at its turn, outperforms the original PM in processing time.

12 Torres-Xirau et al.

515
—e— =21
—%—c=25
® //\ =]
50.5
50 b
[
=z
7]
o
49.5 i
491 f B
48.5 i
48 1 1 1
1large C 2 cascaded C 3 cascaded C 2 independent C 3 independent C

Configuration

Fig. 7. Time-PSNR tradeoffs averaged on 225 reconstructions of independent images.
The image size is 2Mp and the patch size is 3-by-3. 1 large C refers to a single spherical
hashing system with large C, 2/8 independent C refers to configurations of independent
hyperspheres systems with multiple tables, and 2/3 cascaded C refers to the proposed
method. In the experiments, configurations for 2 and 3 stages with equal number of
spheres as for 1 large C are: ci5 = {6,9},{4,5,6}, ca1 = {8,13},{6,7,8} and co5 =
{11, 14}, {7,8,10}.

Even though an open implementation of PAKT is not available, by the com-
parison against CSH published in the original paper [12], we can extrapolate
that our algorithm is qualitatively competitive in terms of time and accuracy.

Figure 8 shows time-accuracy results for 4-by-4 patches and 2Mp images.
Accuracy is measured as the squared Lo distance between the query patch and its
nearest neighbor match found by PM, CSH, our single SpH and our cascaded SpH
(in the experiments N = 3). We also present results obtained by an exhaustive
search to compare the measures to the maximum possible accuracy.

As Figure 9 shows, our results at reconstruction are visually better than
PM/CSH. When compared to the fastest method we achive speed-ups of x1.3
with a quality difference of 9 dB in PSNR. When compared to the most accurate
method, we still improve by 7 dB considering also that our method is x 3.5 faster.

It is interesting to note that reconstructed images obtained using PM are not
able to accurately reconstruct some flat areas (especially noticeable in the first
column of images in Figure 9). This effect appears due to the search algorithm
in PM, which considers the entire patch, while CSH and our method carry out
the search by subtracting the mean value.

6 Conclusions

We propose a new algorithm for computing ANNF. We build on the Spherical
Hashing algorithm of Heo et al. [1], originally presented in the context of data

Fast Approximate Nearest-Neighbor Field by Cascaded Spherical Hashing 13

0.015 T T T T T
——PM
——CSH
| ours cascaded
0.0125 —*— ours single
exhaustive search
g 001 1
s
k]
=l
~ 0.0075 | \\‘\b—*\A i
® 4
= ¢ ¢ + +
g
3 0.005 i
0.0025 | ’i _
0 ! I ! ! !
0 1 2 3 4 5 6
Time (s)

Fig. 8. Time vs accuracy averaged over 225 reconstructions of independent images. The
image size is 2Mp and the patch size is 4-by-4. Each marker on PM’s and CSH’s curves
represents the performance for each iteration. Each marker on our method represents
the performance for increasing total number of hyperspheres ¢; {12, 15, 18, 21, 24, 27}.
Exhaustive search is included to determine the lower bound error, but we avoid to show
the long computation time to keep a proper scaling for the more efficient approaches.

mining, which we adapt to the specific problem of ANNF estimation. We improve
the baseline method by adding a propagation mechanism based on both local
and visual coherence, inspired by the scheme proposed by PAKT [12], which in
turn already extends the original PM local coherence concept [3].

We observed practical limitations in spherical hashing for ANNF when trained
with large numbers of hyperspheres, and we overcome them by introducing a cas-
caded training approach. This cascaded scheme aims to improve the partitioning
of the overpopulated regions without introducing any additional cost in testing
time. In order to do so, we add complexity to the offline training stage to guar-
antee a better balance within the hash table.

We also introduce the usage of the spherical Hamming distance as an alterna-
tive hash selection for the rare situations in which a patch is hashed to an empty
bin. Our algorithm, which allows straight-forward parallelization, has been com-
pared to well-known state-of-the-art methods, obtaining the best-scoring results
both in speed and quality.

We encourage to investigate further the benefits of our ANNF algorithm in
other computer vision applications due to the applicability and feasibility of the
method shown in the experimental results.

14 Torres-Xirau et al.

Fig.9. Visual comparisons of the reconstructed images. Images are 2Mp and the
patches are 4-by-4. All methods are run in 1 iteration, and N = 3 in our method
for a total number of hyperspheres equal to 18 (¢1 = 5, c2 = 6, ¢3 = 7). The run-
ning times are: 0.47s, 1.22s, and 0.35s, with PSNR values are: 39.08dB, 41.44dB and
48.23dB for PM, CSH and ours, respectively.

Fast Approximate Nearest-Neighbor Field by Cascaded Spherical Hashing 15

Acknowledgment

We thank the anonymous reviewers for their constructive feedback, which re-
sulted in an improved manuscript.

References

1. Heo, J.P., Lee, Y., He, J., Chang, S.F., Yoon, S.e.: Spherical hashing. In: IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR).
(2012)

2. Korman, S., Avidan, S.: Coherency sensitive hashing. In: Proceedings of the 2011
International Conference on Computer Vision. ICCV ’11, Washington, DC, USA,
IEEE Computer Society (2011) 1607-1614

3. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: A ran-
domized correspondence algorithm for structural image editing. ACM Transactions
on Graphics (Proc. SIGGRAPH) 28 (2009)

4. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Pro-
ceedings of the International Conference on Computer Vision-Volume 2 - Volume
2. ICCV ’99, Washington, DC, USA, IEEE Computer Society (1999) 1033—

5. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In:
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH '01, New York, NY, USA, ACM (2001) 341-346

6. Kwatra, V., Schodl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: Im-
age and video synthesis using graph cuts. In: ACM SIGGRAPH 2003 Papers.
SIGGRAPH ’03, New York, NY, USA, ACM (2003) 277-286

7. Wexler, Y., Shechtman, E., Irani, M.: Space-time completion of video. IEEE Trans.
Pattern Anal. Mach. Intell. 29 (2007) 463-476

8. Ashikhmin, M.: Synthesizing natural textures. In: Proceedings of the 2001 Sym-
posium on Interactive 3D Graphics. I3D ’01, New York, NY, USA, ACM (2001)
217-226

9. Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., Shum, H.Y.: Synthesis of bidi-
rectional texture functions on arbitrary surfaces. ACM Trans. Graph. 21 (2002)
665672

10. Slaney, M., Casey, M.: Locality-sensitive hashing for finding nearest neighbors
[lecture notes|. Signal Processing Magazine, IEEE 25 (2008) 128-131

11. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry. SCG ’04, New York, NY, USA, ACM
(2004) 253-262

12. Sun, J.: Computing nearest-neighbor fields via propagation-assisted kd-trees. In:
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). CVPR ’12, Washington, DC, USA, IEEE Computer Society (2012)
111-118

13. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw. 3 (1977) 209-226

14. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55 (1997) 119-139

15. Korman, S., Avidan, S.: Csh website. QONLINE (2011)

