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Abstract

Many complex maneuvers involving aircraft, vehicles
and persons are carried out at airport aprons. Manual
video surveillance used for safety and security purposes is
inefficient and privacy protection must be guaranteed. In
this paper, we propose a system named ASEV that automat-
ically assesses situations for airport surveillance. It com-
bines four main components: a low-level image processing
unit based on a new hardware implementation to extract
features in real time, a high-level image processing unit
for scene analysis, a real-time inference engine for scene
understanding, and a data protection stage for log encryp-
tion. In addition, four often neglected aspects are success-
fully addressed: two-way communication between system
and operator, power consumption, monitored people pri-
vacy and operator activity control. Extensive evaluation at
a real airport shows that the proposed system improves the
operator performance with sound and visual alerts based
on the automatic assessment of various events.

1. Introduction
Video surveillance of outdoor airport premises is aimed

at safety and security. Different, complex operations are
manually monitored: aircraft parking, goods loading and
unloading, passengers boarding and deboarding, etc. How-
ever, manual video surveillance is notoriously inefficient:
operators only watch one screen at a time, events are over-
looked as nothing occurs for long periods of time, flight
schedules are often not taken into account, etc. Further-
more, monitoring affects the privacy of employees and pas-
sengers, all the more when personal information, such as
pictures, are retained and stored. Finally, the conflict of in-
terest in the activities of the operator, who is himself an
airport employee, must be addressed.

Figure 1: An airport employee is detected and tracked in
several areas. The system assists the operator with on screen
messages assessing the current situation.

Many individual solutions and several systems have been
recently devised to introduce automation in airport monitor-
ing [1, 2]. In addition to scene analysis, these systems focus
on one or more additional aspects, e.g., improving security
against aircraft collisions, detecting servicing activities, etc.

Four aspects of considerable interest in many situations
are often neglected in the design of monitoring systems:

• Two-way channel between system and operator.

• Power consumption for distributed systems.

• Privacy of the monitored people.

• Control of operator activities.



In most systems, the operator cannot provide any feedback
to the system about the correctness of the received mes-
sages [21]. Thus, the system always assesses similar sit-
uations in the same fashion. Moreover, distributed systems
are commonly chosen if large areas are to be covered. As
the processing load is distributed on each of the many sen-
sors, power consumption is a vital aspect to consider. Fi-
nally, most systems can neither guarantee the privacy of the
monitored, as pictures and videos are permanently stored,
nor keep track of the operator activity, in case he tries to
manipulate both current and stored information.

In this paper, we propose an effective and flexible system
named ASEV that, by combining four different modules,
automatically assess events occurring on the apron and suc-
cessfully addresses the aforementioned issues.

The first component is a high-level multithreading im-
age processing unit, which employs state-of-the-art feature-
based algorithms to perform object tracking, recognition
and classification tasks. The second module is a real-time
ontology-based inference engine, that analyzes the output
of the high-level unit by comparing it to a set of rules. The
resulting messages are communicated to the operator, who
provides feedback to the system to adjust its performance.

Thirdly, a specialized low-power hardware for SIFT [15]
feature extraction enables decentralized image processing,
e.g., for an embedded system within a surveillance cam-
era. A customized application-specific instruction-set pro-
cessor (ASIP) with an instruction-set extension for acceler-
ated computation of SIFT features is emulated on a Xilinx
ML605 evaluation board. The ASIP is a Tensilica Xtensa
LX4 processor. With this ASIP architecture, the system is
still programmable and thus flexible for future algorithmic
changes, and still provides the processing performance re-
quired. The fourth component addresses data security and
privacy. All operators have encryption key pairs assigned by
a Public Key Infrastructure (PKI). As all data usage and op-
erator activities are logged and encrypted, only authorized
auditors can access them, so that tampering is deterred.

The rest of the paper is organized as follows. Related
works are illustrated in Sec. 2, while a system overview and
a detailed description of its components are given in Sec. 3
and 4, respectively. Experimental results are provided in
Sec. 5, while conclusions are given in Sec. 6.

2. Related Works
While for indoor airport surveillance many publications

and systems exist [22, 19], outdoor airport monitoring has
received much less attention. Most papers in the literature
provide solutions to individual problems and only few de-
scribe systems tested at real airports. Individual solutions
address specific monitoring tasks, e.g., tail number recogni-
tion for aircraft identification [8], planes and aircraft detec-
tion [17], or vehicle tracking for activity monitoring [21].
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Figure 2: ASEV system overview.

Many systems integrate cameras and other sensors, like
thermal sensors [10] or surface movement radars (SMR)
[9]. The former employs a network of cameras and infrared
sensors to detect and track objects on the apron, while the
latter uses cameras as “gap-fillers” to provide motion infor-
mation for radar-problematic areas. A pure camera-based
commercial system is proposed by SAAB [3], where many
Pan-Tilt-Zoom (PTZ) cameras in different small airports
can be controlled from a centralized Remote Tower Center.

The works that are most similar to ours are related
to the project AVITRACK and its follow-up Co-FRIEND
[1, 2]. They have a similar operational framework address-
ing apron surveillance: motion detection, followed by ob-
ject tracking and classification on the basis of predefined
events. Even though both systems show some analogy in
the overall design and in the individual components to the
one proposed here, they both fail to address the four issues
highlighted in Sec. 1. No communication from the operator
to the system is envisaged; power consumption is not con-
sidered even if they are distributed systems; no measure for
privacy and misuse control is taken. Our system not only
provides a comparable scene analysis, but it also solves the
aforementioned problems.

3. ASEV System Overview

Here, an overview of the system is given to illustrate
its design and operation, while implementation details are
postponed to the following section. The system is com-
posed of four main operative blocks: feature extraction,
video analysis, inference and data protection, as shown in
Fig. 2. In addition, an input/output interface is available.
Input/Output - It comprises a camera system and a GUI
for the operator. The camera system envisages overview and
Pan-Tilt-Zoom (PTZ) cameras, and each overview camera
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Figure 3: The LL unit consists of the Tensilica Xtensa LX4 ASIP with extended processor pipeline, DDR3 memory for local
buffering of image processing results and communication interface. The HL unit sends images to the LL unit via Ethernet,
and a feature list is returned. The processor pipeline is extended with a new register file and special functional units (SFU).

is assigned several PTZ cameras in a master-slaves fash-
ion. The GUI allows the operator to switch between camera
views, receive messages and send feedback to the system.
Feature Extraction - It contains the low-level (LL) image
processing unit, which extracts SIFT features from camera
images and transfers them to the HL unit. The former is
parametrized by a set of process variables. This additional
degree of freedom makes the system usable in many scenar-
ios, as only a further tuning to each application is required.
Video Analysis - It comprises the high-level (HL) image
processing unit and the object database.The HL unit analy-
ses the scene by first performing motion detection and even-
tually, object tracking, recognition and classification on the
basis of the features extracted by the LL unit. A database is
used to store feature-based descriptions of known objects.
At run-time, the operator can add descriptions of new ob-
jects to the database for future usage.
Inference - It envisages a real-time ontology-based infer-
ence engine and a knowledge base. The inference engine
receives information from the HL unit, e.g., object position
or identity, and processes it according to a set of hierarchi-
cally structured rules contained in the knowledge base. The
rules define allowed object behaviors on the basis of ob-
ject attributes, e.g., access permission, distance between ve-
hicles, maximum speed, etc. Rules can be deleted, added
and updated by the operator at run time. According to the
resulting danger level, the inference engine sends specific
messages to the operator screen.
Data Protection - It employs mechanisms for privacy pro-
tection and operator activity control. The need for this com-
ponent is twofold. Not only must logs remain undisclosed,
achieved using state-of-the-art encryption techniques, but
operator activity must be traceable in case of tampering,
achieved by introducing digital signatures.

In the following, the system operation is described. Af-
ter the system initialization, where the operator identity is
checked and system parameters are set, the HL unit starts
performing motion detection. If a moving object is detected,
a tracking thread is started on the most suitable PTZ cam-
era associated to the corresponding overview camera. The
HL unit computes the predicted object position in the cho-

sen PTZ view, so that the camera focuses and zooms in.
The PTZ camera pan, tilt, and zoom parameters are contin-
uously adjusted during tracking. A recognition thread im-
mediately follows the tracking thread. Feature-based recog-
nition is performed by comparing the features extracted by
the LL unit to those in the database. If recognition is not
successful, a classification thread starts to evaluate the mov-
ing region with respect to three categories: aircraft, vehicle
or person. The information yielded by the HL unit analy-
sis is sent as streams to the inference module, that is based
on a fast pattern matching algorithm. The algorithm takes
the HL-streamed data as input, extracts objects from it and
matches them to the knowledge base. Afterwards, it per-
forms real-time rule-based reasoning, the results of which
are displayed as on screen messages on the operator’s mon-
itor, who accepts or rejects them. The messages and the op-
erator activity are encrypted to eventually trace them back.

The multithreading design provides the operator the
maximum amount of information available. Tracking sup-
plies data about object position and speed, on which basic
inference rules apply. If classification or recognition are
successful, the object category or identity is transmitted, re-
fining rules accordingly. A rejection-based feedback mech-
anism automatically adjusts the inference rules. Moreover,
privacy is guaranteed, as features are the only stored infor-
mation, and system misuses are deterred by securely log-
ging operator’s activities.

4. System Components and Algorithms
In the following section, details about the technical im-

plementation of the LL and HL units as well as of the infer-
ence engine and the log encryption module are given.

4.1. Low-Level Image Processing Unit

Given the necessity for accelerated SIFT processing and
for platform flexibility as well as strict constraints on power
consumption, an application-specific instruction-set proces-
sor (ASIP) offers the best trade-off. Thanks to the resulting
acceleration, specialized feature-based tasks can achieve
the required processing performance. The ASIP approach
also allows for future algorithmic changes via software.
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Figure 4: HL unit multithreading framework

Application-specific instruction-set processors, especially
the Tensilica Xtensa processor, have shown their capability
in many digital image processing applications before [7].
The low power consumption combined with the high flexi-
bility of a programmable processor and the possibility to ac-
celerate specific processing bottlenecks of algorithms pro-
vide a promising base for computer vision applications [18].

The LL unit consists of the commercially available
Xtensa LX4 ASIP by Tensilica, 512 MB DDR3 memory
and an Ethernet interface, as shown in Fig. 3. The base
Xtensa LX4 core can be configured in multiple processor
characteristics and is extendable by Tensilica Instruction
Extensions (TIEs) to accelerate processing steps. In this
case, the processor pipeline is extended with a new register
file and special functional units. The emulation platform is a
Xilinx ML605 evaluation board with a Virtex 6 FPGA [23].

To achieve the required processing performance, a new
register file is defined for parallel image processing. Basic
image processing and special SIFT processing steps are ac-
celerated by customized special functional units. A Gaus-
sian filtering, which is a symmetric and separable FIR fil-
ter, is accelerated, including a mode for choosing the ker-
nel size. Furthermore, arithmetic functions with high com-
putational costs, e.g., arctangent, integer square root or
sine/cosine, are approximated and accelerated with special
functional units to meet the strict processing constraints.

4.2. High-Level Image Processing Unit

As shown in Fig. 4, the HL unit implements several tasks
performing scene analysis in a multithreading fashion. Each
block in Fig. 4 is described in the following.

System Initialization - It is composed of:

Camera calibration - The overview camera is fully cali-
brated with respect to a fixed world coordinate frame. The

operator performs calibration using a simple GUI tool and
airport maps with precise apron measurements. As the
scene geometry can be approximated as two-dimensional,
the world coordinate frame and the image frame are related
by a homography Ho→w. Then, each PTZ camera is auto-
matically registered to its corresponding overview camera
via a homography Hp→o, so that all positions in all views
can be expressed in one global coordinate frame.
Database Loading - Feature-based object descriptions are
loaded for recognition purposes. At run time, the operator
can add descriptions of new objects currently on the scene.
Motion Detection Thread - Motion detection is per-
formed on the overview camera images, and is always in
execution so that every event occurring on the scene can fire
a tracking thread. Motion detection is performed through
a Gaussian mixture-based segmentation algorithm [25].
The algorithm output is a binary image to which dilation
and erosion operators are applied for noise reduction.
The binary image is then analyzed by a blob detector that
identifies the connected components whose size is larger
than a fixed threshold. The threshold is inclusive in order to
accommodate for small objects, like vehicles and persons.
For each connected component, the overview camera
assigns a tracking task to the most suitable PTZ camera on
the basis of the calibration information.
Object Tracking Thread - The PTZ camera performs
tracking on the region hypothesis provided by the overview
camera. A KLT tracker is used to track the target object
in consecutive video frames [20]. An estimation of the ob-
ject direction based on the tracking information is used to
continuously adjust the PTZ camera, which returns the up-
dated pan p and tilt t parameters. Prediction is computed
every two frames to keep camera motion to a minimum,
as mechanical movements introduce delay. The size of the
moving object is used to adjust the PTZ zoom parameter,
changing the camera focal length to f ′ = zf , where z is the
zoom factor and f the initial focal length. Accordingly, the
homography to the overview camera changes to

H ′p→o = Hp→oKRpRtK
−1
z , (1)

where Kz is the intrinsic camera matrix with focal length
f ′, Rp and Rt are the rotation matrices defined by p and t.
The position of the tracked object as well as its speed and
direction are sent to the inference stage. For a more detailed
scene analysis, a recognition thread is started.
Object Recognition Thread - Recognition is performed
according to the feature-based paradigm. A set of SIFT fea-
tures is extracted by the LL unit from the tracked region
and compared to object descriptions in the database. The
object with the highest number of geometrically consistent
correspondences assigns its label to the moving region. To
cope with pose changes, each object has several descrip-
tions indexed by the view. If recognition is successful, the



information about the object identity is sent to the inference
stage, otherwise a classification thread is started.
Object Classification Thread - In case the object is not
identified, the moving region is analyzed with a Deformable
Part Model-based (DPM) classifier [11]. The classifier has
been trained with three different categories: airplanes, ve-
hicles and persons. In case of success, the object class is
sent to the inference stage. It is important to remark that the
object classifier provides only the label “Person”, and not
the precise person identity. Therefore, personal privacy is
enforced without affecting surveillance performance.

4.3. Inference

The inference engine is based on a pattern matching al-
gorithm that determines which system rules apply. RETE
is a state-of-the-art system family for implementing infer-
ence engines [12]. A major challenge in this context is that
the inference algorithm needs to process event-based data
in real time. This can be obtained via stream or incremen-
tal reasoning. Thereby, we leverage a popular fast RETE-
based implementation, BaseVISOr [4], and set it on top
of a semantic knowledge base, empowered by an airport-
domain ontology. The main difference between a static and
a dynamic knowledge base for event streams is that in the
streaming world, facts have an expiration date. As systems
are constantly fed with new facts, old and no longer reality-
representative facts need to be identified and removed. A
trivial solution is to attribute each fact an expiration date,
which gets updated if the same object is encountered again,
otherwise the object expires and is automatically removed.

4.4. Log Encryption

To protect messages and trace operator activities, each
operator is given a key pair by the PKI. The private key is
linked to a personal ID and password, so that the operator
can prove his/her identity at system start.

Logging envisages three operations: digital signature for
operator tracing, encryption for message secrecy, integrity
protection for manipulation deterrence. First, a signed log
is obtained as the concatenation of the plain log and its
SHA-256 digest, which is encrypted with the operator’s pri-
vate RSA key. Then, an encrypted signed log results from
the concatenation of the AES-encrypted signed log and the
AES key, which is itself encrypted with the public RSA key
of the PKI. Finally, the encrypted signed log is concatenated
to previous logs, and a further SHA-256 digest is computed.

5. Experimental Results
The experimental section presents both component and

system evaluation. The LL unit and the inference engine
are compared against standard implementations and bench-
marks in order to highlight their individual contributions.

Function Base processor Our processor # Invocations

Arctangent 500 29 1400
Integer square root 1534 22 1400

Sine 6532 5 2
Gaussian Filtering 161,492,072 1,562,757

SIFT Feat. Extraction 1,023,910,174

Table 1: The number of cycles for selected arithmetic func-
tions with the corresponding average invocation for one de-
tected feature during SIFT processing. The Gaussian filter-
ing is simulated with a kernel size of 15 × 15 pixels. The
image size is 640× 480 pixels.

The ASEV system was evaluated at a real airport during a
one-month test run. Extensive data has been collected and
a thorough evaluation is presented in the following.

5.1. Low Level Image Processing Unit Evaluation

To evaluate the LL unit performance, the cycle count of
the original SIFT C reference implementation [14] is com-
pared to the cycle count of the accelerated processor. To
be sure that the implemented approximations provide suffi-
cient accuracy, the resulting descriptors are compared with
the reference descriptors of the same images.

Cycle count reduction is the main goal to accelerate SIFT
processing on the LL unit. In Table 1, cycle counts of the
base processor and our extended processor are compared
and the average number of function invocations for one de-
tected feature is shown. Thanks to the processor extension,
sine computation requires now 5 cycles instead of 6532,
which means a speed-up factor of 1306. The arctangent and
integer square root function are invoked 1400 times on aver-
age for one detected keypoint. With a reduction of the cycle
count from 500 to 29 for one arctangent computation and
from 1534 to 22 for one integer square root computation,
the cycle count is reduced by 2.7 million cycles per feature
just for those two computations. Compared to the SIFT C
reference implementation on a basic Xtensa LX4 core, the
number of total processing cycles, and thus the processing
speed, is reduced by a factor of over 160 for the extended
processor, still providing the original feature quality. As the
LL unit is a programmable platform, full software flexibil-
ity is available, so that future SIFT software updates can be
applied without changing the complete LL unit.

For a 45nm standard CMOS technology, the Tensil-
ica tool estimated a power consumption of approximately
57.84 mW at 100 MHz and a silicon area of 1.3 mm2. To the
authors’ best knowledge, this work is the first full ASIP im-
plementation for SIFT feature extraction, without any other
dedicated hardware accelerator.

5.2. Inference Engine Evaluation

To evaluate our inference engine in the streaming con-
text, an evaluation framework is needed. We used the novel



benchmark proposed in [16], that is a stream-based exten-
sion of LUBM [13]. Briefly, the benchmark provides a gen-
erated university knowledge base and dynamically changes
a portion of the facts after every semester. The tested sys-
tem needs to detect this inconsistency, remove the expired
facts and infer new results. We consider it fair to evaluate
our inference engine with this benchmark, as it assesses the
intrinsic engine performance, which is uncorrelated to the
application at hand. We compared our choice, BaseVISOr,
with three state-of-the-art systems: Jess [5], Pellet [6] on
top of Jena as well as OWLAPI. Loading time and query
response time are used as main metrics.

First, we compared our choice with respect to the other
RETE-based system, Jess. The experiment is carried out
with the Query 14 for SLUBM(1,0,5) (1 university over 5
semesters). Regarding loading time, BaseVISOr is faster by
a factor of 37, 11.33 s vs 419.2 s, while for query response
time BaseVISOr is faster by a factor of 3000, 0.14 s vs.
414.41 s. BaseVISOr is much faster because it exploits a
triple-based data structure with binary predicates, thus sim-
plifying the heavy work for pattern matching. To relate this
experiment to our application, we have to think that infer-
ence time is approximately proportional to the amount of
facts, which is in the order of 105 for this experiment and
around 103 for our application, with approximately 10%
of dynamic facts in both contexts. Figure 5 depicts the
query response time for BaseVISOr, Pellet+OWLAPI and
Pellet+Jena for SLUBM(10,0,5). BaseVISOr is slower at
first, but becomes significantly faster with time, executing
less computations and becoming more efficient, which is an
essential characteristic of a stream-based reasoning system.
Overall, we can conclude that our choice for BaseVISOr
(RETE + optimization) guarantees a superior performance
with respect to other state-of-the-art engines.

5.3. Overall System Evaluation

Here, the results of a one-month test run of the ASEV
system at a regional airport are given. Results are presented
for the motion detection, tracking and classification tasks.

To evaluate motion detection, Precision and Recall are
considered. Precision, defined as TP

TP+FP , reaches a value
of 60%, while Recall, defined as TP

TP+FN , reaches 95%.
Given the system architecture and the multithreading de-
sign, False Positives are a minor issue, as they will be
later discarded by the tracking, recognition or classification
thread. On the contrary, Recall is an extremely important
value for security, as False Negatives can be very danger-
ous. Just consider the potential danger of a full-loaded re-
fueler moving undetected during passenger boarding. Our
system proves to be almost free from False Negatives.

To assess tracking, three standard measures are consid-
ered: mostly tracked (MT) trajectories, mostly lost (ML)
trajectories, and partially tracked (PT) trajectories [24]. MT

Figure 5: The performance of different systems for
SLUBM(10,0,5)

Classifier Output
Person Aircraft Vehicle No Object

Actual
Object

Person 0.725 0.034 0.0 0.241
Aircraft 0.10 0.70 0.0 0.20
Vehicle 0.25 0.0 0.50 0.25

No Object 0.05 0.07 0.0 0.88

Table 2: Confusion table of the classifier

are defined as those trajectories that are successfully tracked
for more than 80%, ML as those that are successfully
tracked for less than 20%, PT as the remaining trajectories,
i.e, 1 −MT −ML. The system reaches a performance of
70% for MT, 25% for PT and 5% for ML, respectively. This
indicates that the system succeeds in following most of the
objects most of the time. In addition, most tracks are lost
only before the object exits the scene, e.g., when an aircraft
is taking off or passengers approaches the entrance.

Regarding classification performance, the confusion ma-
trix for the three categories is given in Table 2. A further
explanation is needed for the “No Object” entry. This ad-
dresses the case in which the motion detector fires a tracking
thread, and eventually a classification thread, but nothing is
actually on the scene. The DPM classifier outputs also a
score1 that can be used to filter weak results. The thresh-
old was experimentally set to −1. Regarding the three cat-
egories, the classifier performance is remarkably good for
airplanes and persons, with a 70% and 72.5% of correct
classification. The lower performance for vehicles is mo-
tivated by the great intra-class variability of the training set
that includes very different vehicles, e.g., refuelers, luggage
carts, pushback tugs, etc. This can be coped with by exploit-
ing the system capability of adding new object descriptions
to the database at run time, so that newly stored objects will
be likely found during the next recognition thread.

In Fig. 6, visual results of the system performance are
provided. In the two sequences, a moving airplane is de-
tected and tracked on the apron and on the runway, and
airport employee is detected and tracked on the apron and

1Please refer to the DPM implementation for the score meaning



Figure 6: Airplane tracking on apron and runway (top), person tracking on apron and taxiway (bottom). Different messages
describing each situation in terms of object, area and danger level are shown. Moreover, in the first sequence a still object is
not detected, while the second sequence shows the system robustness to low illumination.

on the taxiway, respectively. The ASEV system correctly
classifies the situation, in terms of object and location, and
the inference engine provides messages with varying impor-
tance according to the knowledge base.

6. Conclusions
We proposed a system named ASEV for outdoor air-

port surveillance that combines four modules: an innova-
tive low-level and a state-of-the-art high-level image pro-
cessing units, a real-time inference engine and an encryp-
tion module. In addition to a full scene analysis, the pro-
posed solution successfully addresses four often neglected
aspects: two-way communication between system and op-
erator, power consumption, privacy of the monitored peo-
ple, and activity control of the operator. A one-month test
at a real airport proved that the system assists the operator
with sound and visual alerts, that result from an automatic
assessment of a large set of different events on the apron.
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