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Abstract. Segmentation of image sequences is a challenging task in computer
vision. Time-of-Flight cameras provide additional information, namely depth,
that can be integrated as an additional feature in a segmentation approach. Typi-
cally, the depth information is less sensitive to environment changes. Combined
with appearance, this yields a more robust segmentation method. Motivated by
the fact that a simple combination of two information sources might not be the
best solution, we propose a novel scheme based on Dempster’s theory of evi-
dence. In contrast to existing methods, the use of Dempster’s theory of evidence
allows to model inaccuracy and uncertainty. The inaccuracy of the information is
influenced by an adaptive weight, that provides a measurement of how reliable a
certain information might be. We compare our method with others on a publicly
available set of image sequences. We show that the use of our proposed fusion
scheme improves the segmentation.

1 Introduction

Segmentation of foreground objects in video sequences is a fundamental step in many
computer vision applications and has been widely studied in the last years. A popular
application in movie production is the integration of virtual objects into a sequence [1].
Because of many aspects in real-world scenarios video segmentation is a very challeng-
ing task. Illumination changes or background appearance changes, caused by people
walking around, are typical problems that need to be treated.

The segmentation problem can be formulated using probabilistic models like Markov
or conditional random fields. It has been shown, that the maximum a posteriori solution
for these models corresponds to the discrete minimization of an appropriate energy
function [2–4].

Time-of-Flight (ToF) cameras are perfect candidates to simplify the problem of bi-
nary video segmentation. ToF cameras use active sensors to measure the time taken by
infrared light to travel to the object and back to the camera. The travel time corresponds
to a certain depth value. Thus, ToF cameras are able to determine the depth value for
the pixels in an image, which can be seen as additional information for each pixel.

The proposed algorithm is related to many recent works on binary image or video
segmentation [2–7]. In [2–4], the authors use a discrete energy minimizing framework
for interactive image segmentation. The problem of segmentation is transferred on a
graph, where the minimum cut corresponds to the minimum energy state. In [5] and
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Fig. 1. Example segmentation result by fusing color and depth information using Dempster’s
theory of evidence. The explicit modeling of uncertainty forces the algorithm to segment the
person in the foreground even if the depth information of the person in the background is similar.
Input data taken from [9].

in [7], stereo images where used to estimate the scene depth. They showed that the
combination of estimated depth and color improves the segmentation result. However,
the estimation of the scene depth is a non trivial problem that is prone to errors in
real-world scenarios.

The two most related methods are [8, 9]. In [8], Scheuermann and Rosenhahn pro-
posed to use Dempster’s theory of evidence for energy minimizing segmentation. They
proposed a variational energy functional, including mass functions to fuse color and
texture information, and solved it using level sets. In [9], Wang et al. proposed a very
similar method, the so-called ToFCut algorithm. They combine depth and color cues in
a discrete energy function and weight the information adaptively.

In this paper, we propose a novel method to fuse color and depth information in
a discrete energy function. Therefore we use Dempster’s theory of evidence to com-
bine the different information. Using the proposed feature fusion allows us to explicitly
model inaccuracy and uncertainty. This modeling provides an elegant way to incorpo-
rate the reliability of a feature channel. The information about how reliable a feature
channel might be, can be either defined manually, based on prior information, or using
our proposed adaptive weighting function. The adaptive weighting uses the symmetric
Kulback-Leibler divergence as a measure of reliability. Therefore we compute distances
of foreground and background histograms based on the segmentation result of the pre-
vious frame.

In summary, our main contributions are:

– A novel discrete energy function including Dempster’s theory of evidence for fea-
ture fusion.

– An adjustable mass function, that can either use prior information or an adaptive
weighting function based on the symmetric Kullback-Leibler divergence.

– Improved color and depth models, that are more robust.

In contrast to [9], we propose to use Dempster’s theory of evidence to fuse color and
depth information. We show that the proposed discrete energy function is more intu-
itive then the ToFCut functional. Furthermore, we propose stable functions, based on
the Kulback-Leibler divergence, to adaptively compute the confidence of each sensor.
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The experimental validation on the data set used in [9] shows that the proposed method
outperforms ToFCut.

2 Segmentation by Discrete Energy Minimization

The problem of binary segmenting an image or image sequence can be formalized by
minimization of a discrete energy function E : Ln → R. Usually the energy function
is written as the sum of unary ϕi and pairwise ϕi,j potentials.

E(x) =
∑

i∈V
ϕi(xi) +

∑

(i,j)∈E
ϕi,j(xi, xj) , (1)

where x ∈ Ln is a labeling, V corresponds to the set of all image pixels and E is the
set of all neighboring pixels. In case of binary segmentation, the label set L consists
of foreground (FG) and background (BG) labels. The unary potential ϕi is given as
the negative log-likelihood of a probability measure, e.g. a standard Gaussian mixture
model (GMM) [4]:

ϕi(xi) = − log p(Ii | xi = L) , (2)

where Ii is the feature vector of pixel i, e.g. RGB values. L is either FG or BG and p
is the likelihood. The pairwise potential is usually given by a contrast sensitive Ising
model, defined by

ϕi,j(xi, xj) = γ · dist(i, j)−1 · [xi �= xj ] · exp(−β||Ii − Ij ||2) . (3)

Here γ specifies the impact of the pairwise potential, [·] is the indicator function and
dist(·) is the Euclidean distance between neighboring pixels. The parameter β is defined
as β = (2〈||Ii − Ij ||2〉)−1, where 〈·〉 indicates expectation [10].

In [9], the energy function is extended by means of additional depth information.
Therefore, the unary potential takes the form:

ϕi(xi) = −λc · log pc(Ii | xi = L)− λd · log pd(Di | xi = L) , (4)

where Di is the depth of pixel i. The likelihood pc is a GMM learned using 3D his-
tograms with 83 bins in the RGB color space and the likelihood for depth pd is modeled
by two Gaussian distributions. The parameters λc and λd are used to adaptively weight
the impact of both cues. They are based on the discriminative capabilities of the two
likelihoods. The color confidence is computed using the Kulback-Leibler divergence
(KL) between the grayscale histograms of frames It−1 and It (denoted by δKL

lum) and
the KL divegence between foreground and background color histograms of frame It−1

(δKL
rgb ) . This yields the confidence of the color term

Rc = exp

(
− δKL

lum

ηlum

)
·
(
1− exp

(
−δKL

rgb

ηrgb

))
, (5)

with parameters ηlum and ηrgb. The depth confidence Rd is computed using the dis-
tance between the average depth values for foreground and background in frame It−1
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(Δχ = |(χf + χ′f )− (χb + χ′b)|/2). Here, χf , χ′f , χb and χ′b are the mean values of
the Gaussian distributions pd. This yields

Rd = 1− exp

(
−Δχ

ηd

)
, (6)

with the additional parameter ηd. Finally the adaptive weights are defined as λc =
Rc/(Rc+Rd) and λd = Rd/(Rc+Rd). For more details on the likelihood terms and
the adaptive weighting the reader is referred to [9].

In contrast to ToFCut, we propose to use the symmetric Kulback-Leibler divergence,
since the symmetric distance does not depend on the order of the feature channels. We
also use the symmetric KL divergence to measure the distance between FG and BG
depth histograms in frame It−1, since the given definition using Δχ lacks in precision.

It has been shown that, using the defined unary and pairwise potentials, the energy
(1) is submodular and can hence be represented by a graph G [10]. In this form, the
global minimum of the energy function corresponds to the minimum cut of graph G
that can be computed using standard maximum flow algorithms [11].

2.1 Dempster’s Theory of Evidence

We continue with a brief review of Dempster’s theory of evidence [12, 13], which is
later used to fuse color and depth cues. Several works [8, 14, 15] applied the theory to
image segmentation and showed that it can be superior to classical probability theory.

Dempster’s theory of evidence is a generalization of classical probability theory,
with the ability to jointly represent inaccuracy and uncertainty information. The theory
is build on so-called basic probability assignments (also known as mass functions), that
are defined on a hypotheses set Ω. In our case, the hypotheses set is composed by the
labels FG and BG. The mass function m(A) : ℘(Ω) → [0, 1] is defined on the power
set of Ω.

The quantity m(A) is interpreted as the belief strictly placed on hypothesis A. In
contrast to classical probability theory, this belief is distributed on both simple and
composed classes and models the impossibility to separate several hypotheses. This
characterizes the principal advantage of the evidence theory.

Another particular characteristic of Dempster’s theory, one which differs from clas-
sical probability theory, is: if m(A) < 1, then the remaining mass 1 −m(A) does not
need necessarily refute A (i.e. support its negation). Thus we do not have the so-called
additivity rule p(A) + p(A) = 1.

To fuse mass functions from different feature channels we use Dempster’s rule of
combination, denoted by m = m1 ⊗ m2. This rule combines two independent bodies
of evidence, defined on the same hypotheses set Ω, into one body of evidence. Since
Dempster’s rule of combination has shown to be associative, we can combine informa-
tion arising from more than two channels.

3 Feature Fusion Using Dempster’s Theory of Evidence

In this Section we describe the details of our proposed segmentation scheme and show
similarities and differences to existing approaches.
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The unary potential used by ToFCut is defined as a weighted sum of negative log
likelihoods, see Equation (4), and can be reformulated as:

ϕi(xi) = − log
[
pc(Ii|xi = L)λc · pd(Di|xi = L)λd

]
, (7)

which can be interpreted as follows: if the confidence for a channel is near zero, the
likelihood is near one. That means, to ignore a channel we push the corresponding
likelihoods near one. This is a neither intuitive nor elegant solution. Furthermore, this
non-linear solution heavily depends on a good adaptive weighting function.

In contrast to ToFCut our unary potential is defined using Dempster’s basic proba-
bility assignment:

ϕDS
i (xi) = − logm(xi = L) , (8)

where the mass function m = mc ⊗ md fuses the information of color and depth
according to Dempster’s rule of combination. Thus the complete energy function reads:

E(x) =
∑

i∈V
ϕDS
i (xi) +

∑

(i,j)∈E
ϕi,j(xi, xj) , (9)

Using the proposed unary potential ϕDS
i , we can elegantly model the uncertainty of

a channel by defining the corresponding mass functions appropriately. Since we use
Dempster’s rule of combination, that is associative, we can also include additional in-
formation e.g. texture and motion.

3.1 Mass Functions

The most important difference between the proposed method and ToFCut is the fea-
ture fusion using Dempster’s theory of evidence instead of summing up weighted log-
likelihoods. Therefore the main contribution is the definition of appropriate mass func-
tions, that model inaccuracy and uncertainty in an elegant way. The mass functions
modeling color and depth information are defined by:

mc(Ω) =
λd(1− (pc(Ii|xi = FG) + pc(Ii|xi = BG)))

K
,

mc(L) = (1−mc(Ω))
pc(Ii|xi = L)

pc(Ii|xi = FG) + pc(Ii|xi = BG)

(10)

for the color term and

md(Ω) =
λc(1− (pd(Ii|xi = FG) + pd(Ii|xi = BG)))

K
,

md(L) = (1−md(Ω))
pd(Di|xi = L)

pd(Di|xi = FG) + pd(Di|xi = BG)

(11)

for the depth term, where L is either FG or BG. The uncertainty mc(Ω) and md(Ω) of
the models is defined by summing up the likelihoods. This means that the uncertainty
of a model is high, if FG and BG likelihoods are small. The normalization factor K is
chosen so that mc(Ω)+md(Ω) = 1, which means that the sum of modeled uncertainty
is one. The parameters λd and λc are the adaptive weights coming from the histogram
analysis. They can be used to further increase or decrease the importance of a feature
channel.
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Table 1. Comparison between the proposed method DS and ToFCut obtained on four video se-
quences. The mean percentage error, computed across the whole sequence, is provided. The re-
sults obtained by ToFCut are taken from [9]. The proposed method clearly outperforms ToFCut.

Seq. ID WL MS MC CW

No. Frames 200 400 300 300

Alg. ToFCut DS ToFCut DS ToFCut DS ToFCut DS

% Error (Equal Weight Fusion) 1.37 0.54 0.51 0.23 0.16 0.06 11.68 2.21

% Error (Adaptive Weight Fusion) 1.35 0.51 0.51 0.23 0.15 0.06 0.38 0.26

3.2 Color and Depth Likelihoods

We also use an improved color model, since the one proposed in [9] is sensitive to small
bins and lacks in precision, leading to suboptimal segmentation results. Similarly to [9],
we use two 3D histogram with H = 83 bins in the RGB space for FG and BG. For each
bin we learn a 3D-Gaussian with mean μj

k, covariance matrix Σj
k and weight wj

k, for
k ∈ 1 . . .H and j ∈ {FG, BG}. The conditional probability is now given by:

p(Ii | xi = L) =
∑

i∈N
wL

i G(Ii|μL
i , Σ

L
i ) . (12)

In contrast to ToFCut we omit the normalization term, to make the model more robust.
To model the depth likelihoods we use the conditional probability proposed by Wang

et al. [9], where two Gaussian’s are used for foreground and background. Furthermore
we define a threshold T on the depth map, to exclude pixels from the training of the
Gaussians. This threshold forces pixels with a depth value smaller than T to be seg-
mented as background and improves our FG and BG models. Thus, the single parameter
T is intuitive and easy to adjust.

4 Experimental Results

In this Section, the evaluation of the proposed method is presented. For qualitative and
quantitative analysis we use the ToFCut data set with the corresponding ground truth
data 1. In Table 1 we present the obtained results and compare them to ToFCut by means
of mean percentage error of misclassified pixels [5, 9]. In the experiments we use an
equal weight fusion of color and depth information by setting λc = λd = 0.5 and an
adaptive weight fusion based on histogram analysis. The quantitative results show that
for both systems, equal weight fusion and adaptive weight fusion, the proposed fusion
with Dempster’s theory outperforms ToFCut. Important to notice is, that we only need
to adjust two intuitive parameters: γ, the weighting of neighboring discontinuities and
T , the threshold of the depth map. The parameters ηlum, ηrgb and ηd, controlling the
adaptive weighting, remain constant in all our experiments, while in [9] they have to be
adjusted for each sequence manually. Furthermore, the results show that the proposed

1 http://vis.uky.edu/

http://vis.uky.edu/
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Sequence: WL MS MC CW

Fig. 2. Example segmentation results, on four sample frames from each of the video sequences

fusion works well on many sequences without an adaptive weighting. Qualitative results
for all sequences are presented in Figure 2. They show that the small segmentation error
corresponds to a high-quality segmentation.

Besides video segmentation, interactive image segmentation is a challenging task.
Since there exists no benchmark including depth images, we use the same data set.
Qualitative results are presented in Figure 3. Since color and depth models are learned
from rough user strokes, the models are likely to be incomplete. By using the proposed
fusion based on Dempster’s theory of evidence, this is elegantly modeled in our mass
functions and the segmentation result outperforms ToFCut.

Fig. 3. Example interactive segmentation result. From left to right: Color image with initialization
(FG in blue/BG in red), corresponding depth image, segmentation result using ToFCut with equal
weights, proposed DS fusion with equal weights.
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5 Conclusion

The paper presents a novel video segmentation scheme. It uses Dempster’s theory of
evidence to fuse color and depth information. With Dempster’s theory of evidence we
are able to define the uncertainty of a feature in an elegant way using prior information
or an adaptive weight based on the symmetric Kullback-Leibler divergence. Further-
more, we propose adjusted color and depth models to improve the segmentation results.
The quantitative evaluation shows that the proposed method outperforms ToFCut. In
contrast to ToFCut, the proposed method has less parameters that are more intuitive and
easy to adjust. An additional property of the proposed fusion scheme is the naturally
given possibility to include further information like motion or user priors.
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