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Abstract. Object detection is an important and challenging task in computer
vision. In cascaded detectors, a scanned image is passed through a cascade in
which all stage detectors have to classify a found object positively. Common de-
tection algorithms use a sliding window approach, resulting in multiple detections
of an object. Thus, the merging of multiple detections is a crucial step in post-
processing which has a high impact on the final detection performance. First, this
paper proposes a novel method for merging multiple detections that exploits intra-
cascade confidences using Dempster’s Theory of Evidence. The evidence theory
allows hereby to model confidence and uncertainty information to compute the
overall confidence measure for a detection. Second, this confidence measure is
applied to improve the accuracy of the determined object position. The proposed
method is evaluated on public object detection benchmarks and is shown to im-
prove the detection performance.

1 Introduction

Object detection is a widely used application in computer vision and has been inten-
sively studied. Most detectors used in computer vision have been trained by a machine
learning algorithm. Especially the cascaded object detector proposed by Viola & Jones
[1] which employs the AdaBoost [2] machine learning algorithm is very successful.
Object detectors are commonly applied by a sliding window which scans the scene
image on shifted positions and varied scales. This frequently results in multiple de-
tections of an object at slightly shifted and scaled positions. In a post-processing step,
these multiple detections have to be combined to determine the final object position and
scale. Often only little effort is spend on detection merging and simple methods are ap-
plied. Although this subtask has a strong impact on the overall accuracy of the detection
framework and the results achieved in benchmarks. E.g., Viola & Jones in [1] merge all
overlapping detection windows to one detection. But this approach easily leads to worse
results in case of increasing numbers of detections, in particular if detections on large
scales are involved. Everingham et al. [3] thus reported in the PASCAL VOC Challenge
that the measured average precision steeply dropped for all participating methods when
they tightened the tolerances for correct detections on the “car” class.

In this work, a novel method for merging multiple detections is proposed. Demp-
ster’s Theory of Evidence is applied to combine confidence values similar to Real Ad-
aBoost [4] and uncertainty information that is available in a cascaded detector. In this
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way intra-cascade information is exploited in an improved merging of multiple detec-
tions during post-processing. Huang et al.[5] introduced a nested classifier to inherit
classification confidences in detection cascades. But their approach is confined to the
classification step and requires a retraining. This paper proposes a novel confidence
measure which is in addition applied to refine the position and scale of merged detec-
tions. It is shown that the proposed confidence gives an appropriate measure to distin-
guish the reliability of detections. As a post-processing step, the proposed method is
easily applicable in other object detection frameworks without the need of retraining
the object classifiers. Hence, other object detection frameworks could benefit from the
proposed detection merging.

2 Merging Multiple Detections Based on Dempster’s Theory

In this Section, the proposed strategies on merging detections are described in detail.
The required methods of machine learning, object detection and evidence theory are
briefly discussed in advance.

2.1 Cascaded Classifier

The object detection framework used in this work utilizes a cascaded classifier as intro-
duced by Viola & Jones [1] and illustrated in Figure 1. Each stage of this cascaded clas-
sifier consists of a strong classifier that is created using the AdaBoost machine learning
algorithm [2]. Hence in a cascade of S stages, S strong classifier have to decide posi-
tively for a scanned sub-window x to be classified as an object. Any of these candidate
sub-windows is then further processed in the post-processing step in which the merging
of multiple detections is done.

Each strong classifier Hs(x) =
∑Ts

t=1 αs,ths,t(x), s ∈ 1 . . . S is composed of an
ensemble of Ts weak classifiers hs,t which have been selected in the training phase
of the AdaBoost algorithm. Each weak classifier returns 0 or 1 in case of a negative
or positive classification, respectively. These ensembles decide in a weighted majority
vote in which each weak classifier hs,t supports its decision by an assigned weight
αs,t that represents the classification error of that weak classifier in training. Thus, the
maximum positive classification of a strong classifier is given by Hs,max =

∑Ts

t=1 αs,t

and the decision threshold of AdaBoost is the weighted majority τs =
1
2

∑Ts

t=1 αs,t.
AdaBoost’s decision threshold aims at a low error rate on the training set without

differentiating between positive and negative training examples. But due to the rejection
opportunity of each cascade stage, a very high true positive rate is primarily desired.
Hence according to [1], a subsequently adjusted threshold τs is used to maintain a very
high true positive rate accepting an also high false positive rate.

2.2 Dempster-Shafer Theory of Evidence

In this section Dempster’s theory of evidence is briefly described. It is utilized in the
proposed method to model intra-cascade decision confidences and uncertainties. The
Dempster-Shafer theory of evidence was introduced in 1968 by A. P. Dempster [6] and
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Fig. 1. Detection cascade: Evaluated sub-window have to be positively classified (P) and passed
by all cascade stages to be considered as a found object. Each cascade stage can reject a sub-
window if it is negatively classified (N) and thus prevents its processing by the following stages.

later in 1976 expanded by G. Shafer [7]. Evidence theory can be interpreted as a gen-
eralization of Bayesian theory that directly allows the representation of uncertainty and
inaccuracy information. The key element of the evidence theory is the definition of a
mass function on a hypotheses set Ω. Let a hypotheses set be denoted by Ω and com-
posed of n single mutually exclusive subsets Ωi written as Ω = {Ω1, Ω2, . . . , Ωn}. For
each element A of the power set ℘(Ω) a mass function m(A) is defined that expresses
the proportion of all evidence assigned to this hypothesis. Hence, the mass function m
represents a degree of confidence and is defined as m : ℘(Ω) → [0, 1]. Furthermore,
the following conditions have to be fulfilled by the mass function:

(i) m(∅) = 0 (ii)
∑

An⊆Ω

m(An) = 1 . (1)

Mass functions in evidence theory describe the totality of belief as opposed to Bayesian
probability functions. This belief can be associated with single and composed sets of
hypotheses allowing for a higher level of abstraction. The so-called additivity rule
p(A) + p(A) = 1 is in contrast to Bayesian theory not generally valid in Dempster-
Shafer evidence theory. This means that if m(A) < 1, the remaining evidence 1−m(A)
does not necessarily claim its negation A.

Dempster’s Rule of Combination. In order to combine information from different
stages of the detection cascade, Dempster’s rule of combination is applied. Dempster’s
rule combines two mass functions that are defined within the same frame of discernment
but belong to independent bodies of evidence. Let m1 and m2 be two mass functions
associated to such independent bodies of evidence. Then Dempster’s rule defines the
new body of evidence by the mass function

m(A) = m1(A)⊗m2(A) =

∑

B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅
m1(B)m2(C)

. (2)

The denominator in Equation (2) works as a normalization factor that ignores the con-
flicting evidence. Hence, Dempster’s rule of combination focuses on the measure of
agreement between two bodies of evidence. Dempster’s rule is associative and thus can
be used to iteratively combine evidences obtained from arbitrary number of classifiers.
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2.3 Joint Confidence Based on Dempster-Shafer

In the proposed application of joining intra-cascade confidences, the frame of discern-
ment is defined as Ω = {TP, FP} containing the set of hypotheses supporting a true
positive (TP) and a false positive (FP) decision, respectively. The uncertainty of each
cascade stage s is modeled by ms(Ω) with respect to its size:

ms(Ω) = 1− Ts
∑S

s=1 Ts

(3)

This leads to a higher belief into stages that consist of larger number of weak classifiers.
The mass functions, expressing the proportion of evidence of a stage s, for true pos-

itive or false positive decisions are defined by:

ms(TP ) =
Hs(x)− τs
Hs,max − τs

(1−ms(Ω)), (4)

ms(FP ) =
(
1− Hs(x) − τs

Hs,max − τs

)
(1−ms(Ω)) (5)

This results in higher stage confidence when the difference between the response of
the strong classifier and the decision threshold grows. Using Dempster’s rule of combi-
nation the stage confidences for a detection Di are joined by

mDi(TP ) = m1(TP )⊗m2(TP )⊗ · · · ⊗mS(TP ) (6)

to gain an overall detection confidence.

2.4 Confidence-Based Detection Merging

Merging of multiple detection commonly takes place in the post-processing step of an
object detection framework. The position and scale information of the candidate sub-
windows has to be processed to determine the true object location.

In this work, the candidate detections are first clustered using the Meanshift al-
gorithm [8,9] as the number of true objects and thus desired clusters is unknown in
advance. The i-th candidate detection is hereby defined as a four-dimensional vec-
tor Di = (xi, yi, γi, δi)

� which represents the combined position (xi, yi)
� and scale

(γi, δi)
� in x and y-dimension. The set of n candidate detections is partitioned by the

Meanshift algorithm in four-dimensional space into k ≤ n sets C = {C1, C2, . . . , Ck}
of clusters. The merged detections are then set as the cluster centers of the k clusters in
C and a simple confidence of the k-th cluster is given by its cluster size |Ck|.

To improve the performance of the object detector, this paper proposes two enhance-
ments to the detection merging. First, the detection confidences given by Equation (6)
are exploited to define the Dempster-Shafer based confidence of the k-th cluster as
Γk =

∑
Di∈Ck

mDi(TP ). Second, these confidences of detections associated to one
cluster are utilized to refine the position and scale of the cluster center. In this way the
Dempster-Shafer refined position/scale of the k-th cluster is defined by:

D′
k =

1

Γk

∑

Di∈Ck

DimDi(TP ) (7)
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Fig. 2. Example images showing detections of our method on the three evaluated data sets:
MIT+CMU [11], FDDB [10] and UIUC lateral car database [12]

3 Experimental Results

In this section, cascaded classifiers are applied by a sliding window to data sets for face
and lateral car detection. The acquired multiple detections are post-processed using
different merging strategies and results are presented for the Face Detection Data Set
and Benchmark (FDDB) [10], the MIT+CMU frontal face database [11] and the UIUC
lateral car database [12]. Figure 2 exemplary shows detections found by our method in
the evaluated data sets.

3.1 Face Detection

For the detection of faces, a classifier is trained on the ”MPLap GENKI-4K” database
from the Machine Perception Laboratory in California [13] that consists of 4000 faces
under different facial expressions. The obtained strong cascaded classifier consists of
10 stages and 593 weak classifiers in total.

Experiments Incorporating Confidence. The first experiments are conducted using
the Face Detection Data Set and Benchmark [10] that contains 5171 faces in 2845
images. This data set also provides an evaluation tool for a consistent comparison of
the performance of competing methods. Evaluations generated by this tool for different
face detectors are available on the project web page1. The evaluation procedure requires
multiple detections to be priorly merged to single detections that have an assigned con-
fidence value. In descending order, each unique confidence value is then selected as
a threshold and the true positive rate and total false positives are calculated consider-
ing all merged detections that have a greater confidence. In this way, a ROC curve is
constructed that presents the detection performance.

The inspection of the detection confidence enables the separate evaluation of two con-
tributions in the proposed approach: The confidence computation based on Dempster-
Shafer theory of evidence and the position and scale refinement using these confidences.

Figure 3 presents the detection results for different strategies on merging multiple
detections. The performance of the Viola & Jones detector in OpenCV, supplied by the
FDDB project page, is presented as a baseline result. But the primary topic of this work

1 http://vis-www.cs.umass.edu/fddb/results.html

http://vis-www.cs.umass.edu/fddb/results.html
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Fig. 3. ROC curve presenting the detection performance on FDDB [10] for different approaches
on merging multiple detections. Confidence calculation and position/scale refinement based on
Dempster-Shafer (DS) is compared to Meanshift-based confidence and position/scale (MS) and
mixed approaches using Dempster-Shafer only for confidence and position/scale, respectively.
The performance of the Viola & Jones implementation in OpenCV is presented as a baseline
result. The shown range is (a) up to saturation and (b) a detailed view.

is the impact of the pre-processing step of multiple detection merging and not the com-
parison to different object detection methods. The proposed method (DS) is compared
to an approach that only exploits the preceding Meanshift clustering (MS). For this, the
number of detections forming each cluster is utilized as the confidence value. In addi-
tion, the results of two mixed approaches are presented that use Dempster-Shafer only
for confidence calculation and position/scale refinement, respectively. The detailed view
in Figure 3(b) demonstrates that, although the same detector is used, the performance
can be significantly improved by about 5% in terms of true positive rate. It can be also
observed from the blue curve in Figure 3(b) that the proposed confidence computation
causes the biggest part of the improvement. This demonstrates that the Dempster-Shafer
confidence gives an appropriate measure to distinguish the reliability of detections. The
position/scale refinement slightly improves the detection performance, indicating that
the trained classifier is not detecting symmetrically around the true object location. The
proposed refinement can rectify that bias presenting improved results in the green curve
of Figure 3(b).

Experiments on Position/Scale Refinement. Additional experiments are performed
on the MIT+CMU frontal face database [11] which consists of 130 grayscale images
containing 511 faces. The image database is partially noisy and blurred and contains
several difficult samples like comics, line drawings and a binary raster image and thus
is, despite its age, still challenging. This test set gives ground truth information on the
position and scale of the faces but no evaluation tool is provided. Hence, the evalua-
tion against ground truth is done by a built-in function of the detection framework that
governs the ROC curve by a threshold multiplier in the detection process instead of
exploiting confidence values.
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Fig. 4. (a) ROC curve presenting the detection performance on the MIT+CMU frontal face
database [11]. The effect of the position/scale refinement using Dempster-Shafer is compared
to Meanshift clustering in the case of loosened and stricter ground truth tolerances. Addition-
ally results when omitting multiple detection merging are presented. (b) ROC curve presenting
the detection performance on the UIUC lateral car database [12]. The effect of the additional
position/scale refinement using Dempster-Shafer is compared to merging multiple detections by
Meanshift clustering.

For this reason, Figure 4(a) shows only the impact of the position/scale refinement.
In addition, results for completely omitting the post-processing are presented as the
built-in evaluation does not require the merging of multiple detections. The general
benefit of the post-processing can be observed from the improved results compared to
the approach without merging multiple detections. During the merging process detec-
tion outliers are suppressed that are outside the ground truth tolerances. The detector
performance only slightly benefits from the position/scale refinement. This is partly
a consequence of the properties of the MIT+CMU frontal face database that contains
many very small faces but provides no subpixel accuracy in the ground truth data. As
the accuracy of the detections position and scale has no influence on the ROC curve as
long as they are inside the tolerances, additional results for stricter tolerances are pre-
sented by the curves labeled as strict. These curves reveal a slight improvement due to
the proposed position/scale refinement even on this unfavourable test set.

3.2 Lateral Car Detection

To evaluate an additional object class, experiments are conducted on the UIUC lat-
eral car database [12]. This database provides a training set containing 1050 grayscale
images (550 cars and 500 non-car images). In addition, images for single and multi-
scale tests are contained as well as an evaluation tool for the calculation of precision
and recall. Figure 4(b) compares the detection results achieved when merging mul-
tiple detections by Meanshift clustering and the proposed position/scale refinement
using Dempster-Shafer confidences. The evaluation tool does not consider detection
confidences but requires multiple detections to be merged to a single detection in ad-
vance. Hence, a concentration on only the impact of the position/scale refinement is
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predetermined. In this experiment, that utilizes a different object class, an improvement
of the detection performance can be observed due to the position/scale refinement. This
indicates that the car classifier as well does not detect symmetrically around the true
object location but introduces a bias that can be rectified by the proposed method.

4 Conclusion

This paper presents a novel method for merging multiple detections which exploits
classification information available in cascaded detectors. Two enhancements are pro-
posed. First, Dempster-Shafer theory of evidence is applied to model a confidence mea-
sure which incorporates intra-cascade decision confidences and uncertainties. Second,
a method is presented to refine the position and scale of merged detections based on
these confidence measures. These methods can be easily integrated in existing detec-
tion frameworks to improve performance without retraining of typical cascaded de-
tectors. Results are presented for a recent benchmark on unconstrained face detection
(FDDB), the MIT+CMU face and the UIUC car database. The refinement of position
and scale solely results in a slight improvement in detection performance. In addition,
the proposed confidence measure shows an improvement of 5% in true positive rate
for applications that consider detection confidences. This demonstrates that Dempster-
Shafer theory of evidence is a powerful technique to model and exploit intra-cascade
confidences.
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