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Abstract

This is the supplemental material for [5]. It contains
a more detailed description of the closed form algorithm
to compute inverse kinematics based on the Paden-Kahan
subproblems. For an extended and more detailed version of
[5] we refer the reader to [7].

1. Paden-Kahan subproblems
We are interested in solving the following problem:

exp(θ1ω̂1) exp(θ2ω̂2) exp(θ3ω̂3) = Rj . (1)

This problem can be solved by decomposing it into sub-
problems as proposed in [4]. A comprehensive description
of the Paden-Kahan subproblems applied to several inverse
kinematic problems can also be found in [3]. The basic
technique for simplification is to apply the kinematic equa-
tions to specific points. By using the property that the rota-
tion of a point on the rotation axis is the point itself, we can
pick a point p on the third axis ω3 and apply it to both sides
of Eq. (1) to obtain

exp(θ1ω̂1) exp(θ2ω̂2)p = Rjp = q (2)

which is known as the Paden-Kahan sub-problem 2. For
our problem the 3 rotation axes intersect at the same joint
location. Consequently, since we are only interested in the
orientations, we can translate the joint location to the origin
qj = O = (0, 0, 0)T . In this way, any point p = λω3

with λ ∈ R, λ 6= 0 is a valid choice for p. Eq. (2) can
decomposed in two subproblems

exp(θ2ω̂2)p = c = exp(−θ1ω̂1)q (3)

where c is the intersection point between the circles cre-
ated by the rotating point p around axis ω2 and the point
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Figure 1: Inverse Kinematics: (a) decomposition into active
(yellow) and passive (green) parameters. Paden-Kahan sub-
problem 2 (b) and sub-problem 1 (c).

q rotating around axis ω1 as shown in Fig. 1 (b). In order
for Eq. (3) to have a solution, the points p, c must lie in
the same plane perpendicular to ω2, and q, c must lie in
the same plane perpendicular to ω1. This implies that the
projection of the position vectors 1 p, c,q onto the span of
ω1, ω2 respectively must be equal, see Fig. 2

ωT
2 p = ωT

2 c and ωT
1 q = ωT

1 c (4)

Additionally, the norm of a vector is preserved after rotation
and therefore

‖p‖ = ‖c‖ = ‖q‖ (5)

Since ω1 and ω2 are not parallel, the vectors ω1, ω2, ω1×ω2

form a basis that span R3. Hence, we can write c in the new
basis as

c = αω1 + βω2 + γ(ω1 × ω2) (6)

where α, β, γ are the new coordinates of c. Now, using the
fact that ω2 ⊥ ω1×ω2 and ω1 ⊥ ω1×ω2, we can substitute
Eq. (6) into Eq. (4) to obtain a system of two equations with

1Since we translated the joint location to the origin we can consider the
points as vectors with origin at the joint location qj .
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two unknowns (α, β)

ωT
2 p = αωT

2 ω1 + β

ωT
1 q = α+ βωT

1 ω2 (7)

from which we can isolate the first two coordinates of c

α =
(ωT

1 ω2)ω
T
2 p− ωT

1 q

(ωT
1 ω2)2 − 1

β =
(ωT

1 ω2)ω
T
1 q− ωT

2 p

(ωT
1 ω2)2 − 1

(8)

From Eq. (5) and Eq. (6) we can write

‖p‖2 = ‖c‖2 = α2+β2+2αβωT
1 ω2+γ

2‖ω1×ω2‖2 (9)

and obtain the third coordinate γ as

γ2 =
‖p‖2 − α2 − β2 − 2αβωT

1 ω2

‖ω1 × ω2‖2
(10)

This last equation has no solution when the circles do not
intersect, one solution when the circles are tangential and
two solutions when the cirlces intersect at two points. For
our choice of decomposition, the passive parameters corre-
spond to 3DoF joints which are modelled as 3 concateneted
revolute joints whose axis are mutually orthogonal. There-
fore, there always exists a solution [3]. We note that the
inverse kinematic solutions presented here are also valid
for other decompositions, e.g. one could choose as passive
paramters two rotation axes of the shoulder joint and one
rotation axis of the elbow joints. However, the existence of
solution should then be checked during the sampling pro-
cess. Once we have the new coordinates (α, β, γ) we can
obtain the intersection point c in the original coordinates
using equation Eq. (6). Thereafter, Eq. (3) can be decom-
posed into two problems of the form

exp(θ2ω̂2)p = c

exp(−θ1ω̂1)q = c (11)

which simplifies to finding the rotation angle about a fixed
axis that brings a point p to a second one c, which is known
as Paden-Kahan sub-problem 1

exp(θ2ω̂2)p = c. (12)

This problem has a solution when the projections of the vec-
tors p and c onto the orthogonal plane to ω2 have equal
lengths. Let p′ and c′ be the projections of p, c onto the
plane perpendicular to ω2, see Fig. 2,

p′ = p− ω2ω
T
2 p and c′ = c− ω2ω

T
2 c. (13)

If the projections have equal lengths ‖p′‖ = ‖c′‖ then the
problem is as simple as finding the angle between the two
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Figure 2: Paden-Kahan subproblem 1: (a) the projection
length of p and c onto ω2 must be equal, (b) the projec-
tion of the vectors p and c onto the orthogonal plane to the
rotation axes ω2

vectors

ωT
2 (p

′ × c′) = sin θ2‖p′‖‖c′‖
p′ · c′ = cos θ2‖p′‖‖c′‖ (14)

By dividing the equations we finally obtain the rotation an-
gle using the using the arc tangent

θ2 = atan2(ωT
2 (p

′ × c′),p′ · c′). (15)

We can find θ1 using the same procedure. Finally, θ3 is
obtained from Eq. (1) after substituting θ1 and θ2

exp(θ3ω̂3) = exp(θ1ω̂1)
T exp(θ2ω̂2)

TRj = R (16)

where the rotation matrix R is known. The rotation angle
θ3 satisfies

2 cos θ3 = (trace(R)− 1) (17)
2 sin θ3 = ωT

3 r (18)

where r = (R32−R23,R13−R31,R21−R12) (page 584
of [1]). Finally, the rotation angle θ3 can be computed from
cos θ3 and sin θ3 using atan2.

By solving these sub-problems for every sensor, we are
able to reconstruct the full state x using only a subset of the
parameters xa and the sensor measurements zsens.

2. Calibration and Synchronization
We explain here in more detail the calibration steps to

align and synchronize IMU and camera coordinate systems.
We recorded several motion sequences of subjects wearing
10 inertial sensors which we split in two groups of 5: the
tracking sensors which we use for tracking and the valida-
tion sensors which we use for evaluation. The tracking sen-
sors are placed in the back and the lower limbs and the val-
idation sensors are placed on the chest and the upper limbs.
An inertial sensor s measures the orientation of its local co-
ordinate system FS

s within a fixed global frame of reference



F I . All sensors derive the same global frame of reference
by merging information from a magnetic field sensor, an ac-
celerometer and a rate gyro. The orientation data is given as
a stream of rotation matrices RIS

s (t) that define the coordi-
nate transform from FS

s to F I . In the process of calibrat-
ing the camera, the global tracking coordinate system FT

is defined by a calibration cube placed into the recording
volume. In order to bring F I and FT into correspondence,
we carefully place the calibration cube such that the axes
of FT directly correspond to the axes of the known F I us-
ing a compass. Like this, the orientation data RIS

s (t) also
directly maps from the local sensor coordinate system FS

s

to the global tracking coordinate system FT and we note
RTS := RIS . Therefore, in contrast to [6], no precalibra-
tion needs to be computed from a pre tracked calibration
sequence. In this paper, we refer to the sensor orientations
by RTS and, where appropriate, by using the correspond-
ing quaternion representation qTS . In our experiments, we
use inertial sensors provided by Xsens [8].

To obtain multiview image sequences, we use four off-
the-shelf consumer cameras that provide temporally unsyn-
chronized videos. The videos are synchronized by cross
correlating the audio signals with a known audio source po-
sition as proposed in [2]. Then, we synchronize the sen-
sor measurements to the cameras using a clapping motion,
which can be detected in the audio data as well as in the
acceleration data measured by the inertial sensors.
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